Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (P<0.05). The use of domestic dog oocytes in the cloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD12256DOI Listing

Publication Analysis

Top Keywords

cloning coyotes
12
successful cloning
8
interspecies somatic
8
somatic cell
8
cell nuclear
8
nuclear transfer
8
domestic dog
8
domestic dogs
8
cloning efficiency
8
donor cells
8

Similar Publications

The causative agent of Lyme disease (LD), , binds factor H (FH) and other complement regulatory proteins to its surface. B31 (type strain) encodes five FH-binding proteins (FHBPs): CspZ, CspA, and the OspE paralogs OspE, OspE, and OspE. This study assessed potential correlations between the production of individual FHBPs, FH-binding ability, and serum resistance using a panel of infectious clonal populations recovered from dogs.

View Article and Find Full Text PDF

Polyploidy, the expression of more than two sets of chromosomes, is common in plants, and is thought to influence plant trait expression and drive plant species evolution. The degree to which polyploidy influences interactions among physiological processes such as growth and defense in natural populations through its effect on phenotypic variability is poorly understood. We link broad plant genotypic features (including polyploidy) to phenotypic expression of growth and chemical defense in natural populations of quaking aspen (Populus tremuloides) to examine patterns in resource allocation that might drive growth-defense tradeoffs.

View Article and Find Full Text PDF

Long interspersed element type 1 (LINE-1; L1) mobilizes during early embryogenesis, neurogenesis, and germ cell development, accounting for 25% of disease-causing heritable insertions and 98% of somatic insertions in cancer. To better understand the regulation and impact of L1 mobilization in the genome, reliable methods for measuring L1 copy number variation (CNV) are needed. Here we present a comprehensive analysis of a droplet digital PCR (ddPCR) based method for quantifying endogenous mouse L1.

View Article and Find Full Text PDF

Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes.

Reprod Fertil Dev

May 2014

Sooam Biotech Research Foundation, 64 Kyungin-ro, Guro-gu, Seoul 152-895, Republic of Korea.

Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo).

View Article and Find Full Text PDF

In an effort to identify the novel virulence determinants of Yersinia pestis, we applied the gene "discovery" methodology, in vivo-induced (IVI) antigen technology, to detect genes upregulated during infection in a laboratory rabbit model for bubonic plague. After screening over 70,000 Escherichia coli clones of Y. pestis DNA expression libraries, products from 25 loci were identified as being seroreactive to reductively adsorbed, pooled immune serum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!