In this work we performed assays for the genetic improvement of the oleaginous yeast Lipomyces starkeyi DSM 70296 focusing on its utilization for lipid biosynthesis from renewable sources. The genetic optimization was carried out by random mutagenesis by ultraviolet irradiation and mutant selection by cerulenin, a compound displaying inhibitory effects on lipid biosynthesis. Mutants demonstrating normal growth in presence of cerulenin were considered as good candidates for further studies. Using this strategy, we selected 6 mutants for further studies, in which their productivities were evaluated by fermentation in shaken flasks and bioreactor. The evaluation of the fermentative performance of mutants was carried out using xylose as sole carbon source; the fermentation of wild-type strain was used as reference. Using this strategy it was possible to identify one mutant (termed A1) presenting a significant increase in the productivity rates of both biomass and lipid in comparison to wild-type strain. A1 mutant was further studied in bioreactor using the same fermentation parameters optimized for L. starkeyi lipid production from a mixed carbon source (xylose:glucose), as previously determined by other studies in our laboratory. A1 presented a productivity increase of 15.1% in biomass and 30.7% in lipid productivity when compared to the wild-type strain with a similar fatty acid composition, despite a slight increase (approx. 7%) on the unsaturated fraction. Our work demonstrates the feasibility of the random mutagenesis strategy coupled with mutant selection based on cerulenin screening for the genetic improvement of the oleaginous yeast L. starkeyi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607992PMC
http://dx.doi.org/10.1186/2191-0855-2-64DOI Listing

Publication Analysis

Top Keywords

oleaginous yeast
12
random mutagenesis
12
wild-type strain
12
lipid production
8
yeast lipomyces
8
lipomyces starkeyi
8
cerulenin screening
8
genetic improvement
8
improvement oleaginous
8
lipid biosynthesis
8

Similar Publications

Bioenergy production from yeast through a thermo-chemical platform.

Bioresour Technol

January 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763 Republic of Korea. Electronic address:

Alternative fuels are urgently needed to mitigate greenhouse gas emissions. This study was conducted to recover bioenergy from non-edible feedstock, an oleaginous yeast biomass obtained during fed-batch cultivation of Yarrowia lipolytica. Yeast oil (lipids) was extracted from the harvested biomass and readily converted into biodiesel using the non-catalytic transesterification method.

View Article and Find Full Text PDF

Oleaginous yeasts are considered promising sources for lipid production due to their ability to accumulate high levels of lipids under appropriate growth conditions. The current study aimed to isolate and identify oleaginous yeasts having superior ability to accumulate high quantities of lipids; and enhancing lipid production using response surface methodology and repeated-batch fermentation. Results revealed that, twenty marine oleaginous yeasts were isolated, and the most potent lipid producer isolate was Candida parapsilosis Y19 according to qualitative screening test using Nile-red dye.

View Article and Find Full Text PDF

Oleaginous yeasts offer a promising sustainable alternative for producing edible lipids, potentially replacing animal and unsustainable plant fats and oils. In this study, we screened 11 oleaginous yeast species for their lipid profiles and identified Apiotrichum brassicae as the most promising candidate due to its versatility across different growth media. A.

View Article and Find Full Text PDF

Background: Sporobolomyces pararoseus is a well-studied oleaginous red yeast that can synthesize a variety of high value-added bioactive compounds. Biofilm is one of the important biological barriers for microbial cells to resist environmental stresses and maintain stable fermentation process. Here, the effect of acidic conditions on the biosynthesis of biofilms in S.

View Article and Find Full Text PDF

Unlabelled: Bioprospecting can uncover new yeast strains and species with interesting ecological characteristics and valuable biotechnological traits, such as the capacity to convert different carbon sources from industrial side and waste streams into bioproducts. In this study, we conducted untargeted yeast bioprospecting in tropical West Africa, collecting 1,996 isolates and determining their growth in 70 different environments. While the collection contains numerous isolates with the potential to assimilate several cost-effective and sustainable carbon and nitrogen sources, we focused on characterizing the 203 strains capable of growing on lactose, the main carbon source in the abundant side stream cheese whey from dairy industries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!