The rpg4 gene confers recessive resistance to several races of wheat stem rust (Puccinia graminis f. sp. tritici) and Rpg5 provides dominant resistance against isolates of the rye stem rust (P. graminis f. sp. secalis) in barley. The rpg4 and Rpg5 genes are tightly linked on chromosome 5H, and positional cloning using high-resolution populations clearly separated the genes, unambiguously identifying Rpg5; however, the identity of rpg4 remained unclear. High-resolution genotyping of critical recombinants at the rpg4/Rpg5 locus, designated here as rpg4-mediated resistance locus (RMRL) delimited two distinct yet tightly linked loci required for resistance, designated as RMRL1 and RMRL2. Utilizing virus-induced gene silencing, each gene at RMRL1, i.e., HvRga1 (a nucleotide-binding site leucine-rich repeat [NBS-LRR] domain gene), Rpg5 (an NBS-LRR-protein kinase domain gene), and HvAdf3 (an actin depolymerizing factor-like gene), was individually silenced followed by inoculation with P. graminis f. sp. tritici race QCCJ. Silencing each gene changed the reaction type from incompatible to compatible, indicating that all three genes are required for rpg4-mediated resistance. This stem rust resistance mechanism in barley follows the emerging theme of unrelated pairs of genetically linked NBS-LRR genes required for specific pathogen recognition and resistance. It also appears that actin cytoskeleton dynamics may play an important role in determining resistance against several races of stem rust in barley.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-06-12-0146-RDOI Listing

Publication Analysis

Top Keywords

stem rust
20
rpg4-mediated resistance
12
wheat stem
8
rust puccinia
8
puccinia graminis
8
gene
8
resistance
8
resistance races
8
graminis tritici
8
tightly linked
8

Similar Publications

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

The global wheat production faces significant challenges due to major rust-causing fungi, namely f. sp. , , and f.

View Article and Find Full Text PDF

The use of biological plant protection products is promising for agriculture. In particular, chitosan-based biopesticides have become widespread for stimulating growth and protecting plants from a wide range of pathogens. Novochizol is a product obtained by intramolecular cross-linking of linear chitosan molecules and has a globular shape, which provides it with a number of advantages over chitosan.

View Article and Find Full Text PDF

Beyond pluripotency: Yamanaka factors drive brain growth and regeneration.

Trends Mol Med

December 2024

Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Electronic address:

The Yamanaka factors (YFs), a set of four transcription factors, are widely studied for their ability to dedifferentiate somatic cells into a pluripotent state. In a recent study, Shen and colleagues show that transient expression of YFs in the mouse brain expands the developing cortex and prevents cognitive decline in an Alzheimer's disease (AD) model.

View Article and Find Full Text PDF

Establishing a Severe Corneal Inflammation Model in Rats Based on Corneal Epithelium Curettage Combined with Corneal Sutures.

J Vis Exp

November 2024

Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University; School of Clinical Medicine, Guizhou Medical University;

Corneal inflammation, especially severe corneal inflammation, plays a significant role in the development of corneal limbal stem cell dysfunction. Constructing appropriate animal models can help us focus on the effects of severe inflammation on corneal limbal stem cells. A 2 mm rust remover was used to remove the central corneal epithelium of Sprague Dawley (SD) rats to create an injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!