Classical novae are important contributors to the abundances of key isotopes, such as the radioactive (18)F, whose observation by satellite missions could provide constraints on nucleosynthesis models in novae. The (17)O(p,γ)(18)F reaction plays a critical role in the synthesis of both oxygen and fluorine isotopes, but its reaction rate is not well determined because of the lack of experimental data at energies relevant to novae explosions. In this study, the reaction cross section has been measured directly for the first time in a wide energy range E(c.m.)~/= 200-370 keV appropriate to hydrogen burning in classical novae. In addition, the E(c.m.)=183 keV resonance strength, ωγ=1.67±0.12 μeV, has been measured with the highest precision to date. The uncertainty on the (17)O(p,γ)(18)F reaction rate has been reduced by a factor of 4, thus leading to firmer constraints on accurate models of novae nucleosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.109.202501DOI Listing

Publication Analysis

Top Keywords

17opγ18f reaction
12
classical novae
12
reaction cross
8
models novae
8
reaction rate
8
novae
6
reaction
5
direct measurement
4
measurement 17opγ18f
4
cross gamow
4

Similar Publications

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Modulating the Oxygen Evolution Reaction of Single-Crystal Cobalt Carbonate Hydroxide via Surface Fe Doping and Facet Dependence.

J Phys Chem Lett

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.

View Article and Find Full Text PDF

Objective: Trichomoniasis is a globally prevalent sexually transmitted infection caused by the protozoan Trichomonas vaginalis. Polymerase chain reaction (PCR) is the gold standard for diagnosing trichomoniasis, but it is expensive. Antigen tests are immunochromatographic immunoassays that detect T.

View Article and Find Full Text PDF

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

The hydrolysis rates of many organic chemicals are accelerated under alkaline conditions by the presence of hydroxide (HO), which is typically assumed to be the predominant species contributing to base-catalyzed hydrolysis in both natural waters and laboratory buffers used in standard protocols. In this study, we demonstrated that weak bases (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!