Intermittent dissipation at kinetic scales in collisionless plasma turbulence.

Phys Rev Lett

Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA.

Published: November 2012

High resolution kinetic simulations of collisionless plasma driven by shear show the development of turbulence characterized by dynamic coherent sheetlike current density structures spanning a range of scales down to electron scales. We present evidence that these structures are sites for heating and dissipation, and that stronger current structures signify higher dissipation rates. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform and patchy.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.109.195001DOI Listing

Publication Analysis

Top Keywords

collisionless plasma
8
heating dissipation
8
intermittent dissipation
4
dissipation kinetic
4
kinetic scales
4
scales collisionless
4
plasma turbulence
4
turbulence high
4
high resolution
4
resolution kinetic
4

Similar Publications

Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets.

View Article and Find Full Text PDF

Collisionless shocks are ubiquitous in space and astrophysical plasmas, and they are essential dynamical features of these systems. Lacking Coulomb collisions, these shocks are mediated by the anomalous dissipation provided by nonlinear plasma instabilities. By numerically resolving the structure of a steady-state, ion gyroviscous shock, we show that ion gyroviscosity, alone, can produce weak (M≲1.

View Article and Find Full Text PDF

We use multispacecraft Magnetospheric Multiscale observations to investigate electric fields and ion reflection at a nonstationary collisionless perpendicular plasma shock. We identify subproton scale (5-10 electron inertial lengths) large-amplitude normal electric fields, balanced by the Hall term (J×B/ne), as a transient feature of the shock ramp related to nonstationarity (rippling). The associated electrostatic potential, comparable to the energy of the incident solar wind protons, decelerates incident ions and reflects a significant fraction of protons, resulting in more efficient shock-drift acceleration than a stationary planar shock.

View Article and Find Full Text PDF
Article Synopsis
  • Turbulence and magnetic reconnection are important nonlinear plasma phenomena that significantly affect energy transport in space and astrophysical plasmas.
  • Recent high-resolution, multi-spacecraft observations have improved our understanding of their complex interactions, revealing how turbulence generates current sheets that can undergo reconnection.
  • This paper reviews current knowledge on these interactions in collisionless plasmas, particularly in Earth's magnetosphere, highlighting findings from NASA's missions in key areas like the magnetosheath and magnetotail.
View Article and Find Full Text PDF

How magnetic reconnection is triggered or suppressed is an important outstanding problem. By considering pinching of a current sheet that has formed at non-equilibrium, we show that the background plasma beta is a major controlling factor in the onset and nature of magnetic reconnection. A high plasma beta inhibits a current sheet from pinching down to kinetic scales required for collisionless reconnection, while a low beta facilitates it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!