Using extensive classical and quantum Monte Carlo simulations, we investigate the ground-state phase diagram of the fully frustrated transverse field Ising model on the square lattice. We show that pure columnar order develops in the low-field phase above a surprisingly large length scale, below which an effective U(1) symmetry is present. The same conclusion applies to the quantum dimer model with purely kinetic energy, to which the model reduces in the zero-field limit, as well as to the stacked classical version of the model. By contrast, the 2D classical version of the model is shown to develop plaquette order. Semiclassical arguments show that the transition from plaquette to columnar order is a consequence of quantum fluctuations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.187202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!