We report a novel derivatization chemistry for determination of fluoride based on the batch reaction of fluoride ions with triethyloxonium tetrachloroferrate(III) in a closed vessel to yield fluoroethane. Gaseous fluoroethane was readily separated from the matrix, sampled from the headspace, and determined by gas chromatography/mass spectrometry. The method was validated using rainwater certified reference material (IRMM CA408) and subsequently applied to the determination of fluoride in various matrixes, including tap water, seawater, and urine. An instrumental limit of detection of 3.2 μg/L with a linear range up to 50 mg/L was achieved. The proposed derivatization is a one-step reaction, requires no organic solvents, and is safe, as the derivatizing agent is nonvolatile. Determination of fluoride is affected by common fluoride-complexing agents, such as Al(III) and Fe(III). The effect of large amounts of these interferences was studied, and the adverse effect of these ions was eliminated by use of the method of standard additions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac302303r | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, 522237, India.
CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.
View Article and Find Full Text PDFCureus
December 2024
Department of Periodontology and Implantology, Government Dental College and Hospital, Jamnagar, Jamnagar, IND.
Introduction In their routine practice, dentists frequently encounter dentinal hypersensitivity, which is caused by the pulpal nerves' increased excitability due to fluid movement in the dentinal tubules. It is treated in-office using dentin desensitizers, which reduce hypersensitivity by obstructing the open tubules or desensitizing the free nerve endings present within the tubules. However, no substance or treatment plan has ever been proven to be the gold standard for the efficient treatment of dentinal hypersensitivity.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Chemistry, College of Science and Humanites at Al-Quway'iyahl, Shaqra University, Saudi Arabia. Electronic address:
This study considered the effects of fluoride, MgO, sucrose, and rGO on the characteristics of the fluoride-carbon-MgO/rGO predicted (F-C-MgO/rGOP) catalyst and its effectiveness in the catalytic ozonation process (COP) for atrazine elimination from aqueous solutions. Using a mixture design, the catalyst composition was optimized to 13.6% sucrose, 50% Mg (OH)2, 25% NaF, and 11.
View Article and Find Full Text PDFJ Indian Soc Pedod Prev Dent
October 2024
Department of Pediatric and Preventive Dentistry, Santosh Deemed to be University, Santosh Dental College and Hospital, Ghaziabad, Uttar Pradesh, India.
J Indian Soc Pedod Prev Dent
October 2024
Department of Paediatric and Preventive Dentistry, T.P.C.T's Terna Dental College, Navi Mumbai, Maharashtra, India.
Objectives: Comparative evaluation of indirect pulp therapy (IPT) with silver diamine fluoride (SDF), Type VII glass ionomer cement (GIC), and calcium hydroxide (Ca(OH)2) in young permanent molars.
Materials And Methods: This was randomized controlled trial, in which 45 children with 60 young permanent first molars were allocated as; Group A: IPT with SDF, Group B: Type VII GIC, and Group C: Ca(OH)2. Clinical and radiographic evaluation and comparison was done at baseline, 3, 6, 12 months.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!