Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.8 MeV/u) and a (CD(2))(n) target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the (130)Sn(d, p)(131)Sn reaction are found to be very similar to those from the previously reported (132)Sn(d, p)(133)Sn reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.172501 | DOI Listing |
Appl Radiat Isot
December 2024
Instituto de Física Corpuscular (CSIC-Universidad de Valencia), Valencia, Spain.
This paper explores the adaptation and application of i-TED Compton imagers for real-time dosimetry in Boron Neutron Capture Therapy (BNCT). The i-TED array, previously utilized in nuclear astrophysics experiments at CERN, is being optimized for detecting and imaging 478 keV gamma-rays, critical for accurate BNCT dosimetry. Detailed Monte Carlo simulations were used to optimize the i-TED detector configuration and enhance its performance in the challenging radiation environment typical of BNCT.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Electronic address:
Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy.
Background: Boron neutron capture therapy (BNCT) is an innovative binary form of radiation therapy with high selectivity towards cancer tissue based on the neutron capture reaction B(n,α)Li, consisting in the exposition of patients to neutron beams after administration of a boron compound with preferential accumulation in cancer cells. The high linear energy transfer products of the ensuing reaction deposit their energy at the cell level, sparing normal tissue. Although progress in accelerator-based BNCT has led to renewed interest in this cancer treatment modality, in vivo dose monitoring during treatment still remains not feasible and several approaches are under investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!