Here we establish the systematic existence of a U(1) degeneracy of all symmetry-allowed Hamiltonians quadratic in the spins on the pyrochlore lattice, at the mean-field level. By extracting the Hamiltonian of Er(2)Ti(2)O(7) from inelastic neutron scattering measurements, we then show that the U(1)-degenerate states of Er(2)Ti(2)O(7) are its classical ground states, and unambiguously show that quantum fluctuations break the degeneracy in a way which is confirmed by experiment. The degree of symmetry protection of the classical U(1) degeneracy in Er(2)Ti(2)O(7) is unprecedented in other materials. As a consequence, our observation of order by disorder is unusually definitive. We provide further verifiable consequences of this phenomenon, and several additional comparisons between theory and experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.167201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!