Giant optical nonlinearity is observed under both continuous wave and pulsed excitation in a deterministically coupled quantum dot-micropillar system, in a pronounced strong-coupling regime. Using absolute reflectivity measurements we determine the critical intracavity photon number as well as the input and output coupling efficiencies of the device. Thanks to a near-unity input-coupling efficiency, we demonstrate a record nonlinearity threshold of only 8 incident photons per pulse. The output-coupling efficiency is found to strongly influence this nonlinearity threshold. We show how the fundamental limit of single-photon nonlinearity can be attained in realistic devices, which would provide an effective interaction between two coincident single-photons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.166806 | DOI Listing |
Chem Sci
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
Traditional tetrahedral-based mid-to-far infrared (MFIR) nonlinear optical (NLO) crystals often face limitations due to the optical anisotropy constraints imposed by their highly symmetric structures. In contrast, the relatively rare trigonal pyramidal [TeS] functional unit characterized by its asymmetric structure and stereochemically active lone pair (SCALP), offers improved optical anisotropy, hyperpolarizability and a broader IR transparency range. Despite its potential, synthetic challenges have hindered the development of MFIR NLO crystals that incorporate this unit, with only one example reported to date.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, K.S.M Devaswom Board College, Sasthamcotta, Kollam, India.
Transition metal based optical limiting materials have garnered significant attention due their crucial role in protecting sensitive optical system from high intense laser damage. Transition metal molybdates exhibits nonlinear optical (NLO) response, which attenuate highly intense light by transmitting light of desired intensity. Herein we report Silver molybdate (AgMoO) nanostructures doped with erbium (Er) ions were successfully synthesized by simple co-precipitation technique.
View Article and Find Full Text PDFNano Lett
January 2025
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China.
Ion transport through atomically thin nano/subnanopores, such as those in monolayer graphene, presents challenges to traditional ion conduction models, primarily due to extreme confinement effects and hydration interactions. Under these conditions, existing models fail to account for conductance behaviors at the nano- and subnanometer scales. In this study, we perform a combined experimental and theoretical investigation of ion transport in monolayer graphene nano/subnanopores across varying salt concentrations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
Two-dimensional (2D) materials with spontaneous polarization can exhibit large second-order nonlinear optical (NLO) effects. Here, we present a series of stable distorted monolayers by using first-principles calculations and lattice vibration analysis. The structural distortion leads to a lower polar symmetry, giving rise to intrinsic ferroelectricity with a Curie point up to room temperature.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, P.R. China.
Currently, the study of cuproptosis focuses on the Cu-induced morphology changes in mitochondria (Mito), and the observation of the effect of endoplasmic reticulum (ER)-related Cu content on cuproptosis is relatively lacking. Herein, we have developed a hydroxyflavone (HF)-based NIR excited two-photon fluorescent probe, BHCO, that exhibits specific recognition of Cu with high resolution. BHCO-Cu (Cu2BC) can lead to DLAT protein aggregation, triggering cuproptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!