Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We predict an unconventional spin-transfer torque (STT) acting on the magnetization of a free ferromagnetic (F) layer within N/TI/F vertical heterostructures, which originates from strong spin-orbit coupling on the surface of a three-dimensional topological insulator (TI), as well as from charge current becoming spin polarized in the direction of transport as it flows perpendicularly from the normal metal (N) across the bulk of the TI layer. The STT vector has both in-plane and perpendicular components that are comparable in magnitude to conventional torque in F'/I/F (where I stands for insulator) magnetic tunnel junctions, while not requiring additional spin-polarizing F' layer with fixed magnetization, which makes it advantageous for spintronics applications. Our principal formal result is a derivation of the nonequilibrium Green function-based formula and the corresponding gauge-invariant nonequilibrium density matrix, which makes it possible to analyze the components of the STT vector in the presence of arbitrary strong spin-orbit coupling either in the bulk or at the interface of the free F layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.166602 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!