Time-resolved measurements of electron and ion temperatures using Thomson scattering have been combined with proton radiography data for comprehensive characterization of individual laser-produced plasma bubbles or the interaction of bubble pairs, where reconnection of azimuthal magnetic fields occurs. Measurements of ion and electron temperatures agree with lasnex simulations of single plasma bubbles, which include the physics of magnetic fields. There is negligible difference in temperatures between a single plasma bubble and the interaction region of bubble pairs, although the ion temperature may be slightly higher due to the collision of expanding plasmas. These results are consistent with reconnection in a β∼8 plasma, where the release of magnetic energy (<5% of the electron thermal energy) does not appreciably affect the hydrodynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.86.056407DOI Listing

Publication Analysis

Top Keywords

plasma bubbles
12
laser-produced plasma
8
thomson scattering
8
proton radiography
8
bubble pairs
8
magnetic fields
8
single plasma
8
plasma
5
characterization single
4
single colliding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!