A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Entrainment of the suprachiasmatic nucleus network by a light-dark cycle. | LitMetric

Entrainment of the suprachiasmatic nucleus network by a light-dark cycle.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, East China Normal University, Shanghai 200062, China.

Published: October 2012

The synchronization of biological activity with the alternation of day and night (circadian rhythm) is performed in the brain by a group of neurons, constituting the suprachiasmatic nucleus (SCN). The SCN is divided into two subgroups of oscillating cells: the ventrolateral (VL) neurons, which are exposed to light (photic signal), and the dorsomedial (DM) neurons, which are coupled to the VL cells. When the coupling between these neurons is strong enough, the system synchronizes with the photic period. Upon increasing the cell coupling, the entrainment of the DM cells has been recently shown to occur via a very sharp (jumping) transition when the period of the photic input is larger than the intrinsic period of the cells. Here, we characterize this transition with a simple realistic model. We show that two bifurcations possibly lead to the disappearance of the endogenous mode. Using a mean-field model, we show that the jumping transition results from a supercritical Hopf-like bifurcation. This finding implies that both the period and strength of the stimulating photic signal, and the relative fraction of cells in the VL and DM compartments, are crucial in determining the synchronization of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.86.041903DOI Listing

Publication Analysis

Top Keywords

suprachiasmatic nucleus
8
photic signal
8
jumping transition
8
cells
5
entrainment suprachiasmatic
4
nucleus network
4
network light-dark
4
light-dark cycle
4
cycle synchronization
4
synchronization biological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!