The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.86.041302 | DOI Listing |
Soft Matter
December 2024
Faculty of Science and Engineering, University Walk, Bristol, BS8 1TR, UK.
The triboelectric charging of granular material is a long-standing and poorly understood phenomenon, with numerous scientific and industrial applications ranging from volcanic lightning to pharmaceutical production. The most widely utilised apparatus for the study of such charging is the Faraday cup, however, existing analysis of the resulting measurements is often simplistic and fails to distinguish charging due to particle-particle interactions from charging occurring through other mechanisms. Here, we outline a modular approach for interpreting these measurements, enabling triboelectric phenomena to be explored in greater detail.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification.
View Article and Find Full Text PDFHeliyon
December 2024
Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d'ingénierie de l'Eau et de l'Environnement (2iE), 1 Rue de la science 01 BP 594 Ouagadougou 01, Burkina Faso.
Sugarcane industries, like other agro-food industries, generate significant volumes of wastewater containing high concentrations of organic and inorganic pollutants. Among the proposed treatment solutions, the anaerobic membrane bioreactor (AnMBR) has proven highly effective in degrading organic pollutants but has limitations in removing color and inorganic pollutants. To address this gap, integrating other technologies with AnMBR is necessary.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha 410114, China.
The morphology of an individual particulate refers to its shape characteristics and size properties, which both play important roles for granular matter in physics, mechanics, chemistry, and biology. In this study, ellipsoidality is defined as a 3D shape index for evaluating particle roundness, and an explicit calculation method is applied. The dependences of 3D shape characteristics (aspect ratios, sphericity, and ellipsoidal degree) on particle size (ranges from 0.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan. Electronic address:
Biofilms offer a solution to the challenge of low biomass retention faced in mainstream partial nitritation/Anammox (PN/A) applications. In this study, a one-stage PN/A reactor derived from initial granular sludge was successfully transformed into a biofilm system using shedding carriers. Environmental stressors, such as ammonium nitrogen concentration and organic matter, significantly affected the competitive dynamics and dominant species composition between Ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!