The substrate specificities of two incorrectly annotated enzymes belonging to cog3964 from the amidohydrolase superfamily were determined. This group of enzymes are currently misannotated as either dihydroorotases or adenine deaminases. Atu3266 from Agrobacterium tumefaciens C58 and Oant2987 from Ochrobactrum anthropi ATCC 49188 were found to catalyze the hydrolysis of acetyl-(R)-mandelate and similar esters with values of k(cat)/K(m) that exceed 10(5) M(-1) s(-1). These enzymes do not catalyze the deamination of adenine or the hydrolysis of dihydroorotate. Atu3266 was crystallized and the structure determined to a resolution of 2.62 Å. The protein folds as a distorted (β/α)(8) barrel and binds two zincs in the active site. The substrate profile was determined via a combination of computational docking to the three-dimensional structure of Atu3266 and screening of a highly focused library of potential substrates. The initial weak hit was the hydrolysis of N-acetyl-D-serine (k(cat)/K(m) = 4 M(-1) s(-1)). This was followed by the progressive identification of acetyl-(R)-glycerate (k(cat)/K(m) = 4 × 10(2) M(-1) s(-1)), acetyl glycolate (k(cat)/K(m) = 1.3 × 10(4) M(-1) s(-1)), and ultimately acetyl-(R)-mandelate (k(cat)/K(m) = 2.8 × 10(5) M(-1) s(-1)).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542638PMC
http://dx.doi.org/10.1021/bi301483zDOI Listing

Publication Analysis

Top Keywords

m-1 s-1
20
three-dimensional structure
8
incorrectly annotated
8
cog3964 amidohydrolase
8
amidohydrolase superfamily
8
105 m-1
8
kcat/km
5
m-1
5
s-1
5
functional annotation
4

Similar Publications

Coordination of inorganic disulfide species to ferric N-acetyl microperoxidase 11.

Biochem Biophys Res Commun

January 2025

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina. Electronic address:

The interest in chemical interactions between inorganic sulfur species and heme compounds has grown significantly in recent years due to their physiological relevance. The model system ferric N-acetyl microperoxidase 11 (NAcMP11Fe) enables the exploration of the mechanistic aspects of the interaction between the ferric heme group and binding sulfur ligands, without the constraints imposed by a protein matrix and the stabilizing effects of distal amino acids. In this study, we investigated the coordination of disulfane (HSSH) and its conjugate base hydrodisulfide (HSS) to NAcMP11Fe.

View Article and Find Full Text PDF

Metal oxides are promising catalysts for small molecule hydrogen chemistries, mediated by interfacial proton-coupled electron transfer (PCET) processes. Engineering the mechanism of PCET has been shown to control the selectivity of reduced products, providing an additional route for improving reductive catalysis with metal oxides. In this work, we present kinetic resolution of the rate determining proton-transfer step of PCET to a titanium-doped POV, TiVO(OCH) with 9,10-dihydrophenazine by monitoring the loss of the cationic radical intermediate using stopped-flow analysis.

View Article and Find Full Text PDF

Stereoactive Lone-Pair Manipulation for High Thermoelectric Performance of GeSe-Based Compounds.

ACS Appl Mater Interfaces

January 2025

Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.

Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.

View Article and Find Full Text PDF

The interaction between proteins and aroma compounds significantly impacts cheese flavor retention during processing. However, it is still unknown how cheese proteins and the aldehyde aroma compounds (AACs) interact. This study aims to clarify the interaction mechanisms between the AACs (benzaldehyde, 2-methylpropanal, 2-methylbutanal and 3-methylbutanal) and β-casein (β-CN) using SPME-GC/MS, multi-spectroscopy techniques, and molecular dynamics simulations.

View Article and Find Full Text PDF

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!