We examined the role of ATP binding by six different ATPase subunits (Rpt1-6) in the cellular assembly and molecular functions of mammalian 26 S proteasome. Four Rpt subunits (Rpt1-4) with ATP binding mutations were incompetent for cellular assembly into 26 S proteasome. In contrast, analogous mutants of Rpt5 and Rpt6 were incorporated normally into 26 S proteasomes in both intact cells and an in vitro assembly assay. Surprisingly, purified 26 S proteasomes containing either mutant Rpt5 or Rpt6 had normal basal ATPase activity and substrate gate opening for hydrolysis of short peptides. However, these mutant 26 S proteasomes were severely defective for ATP-dependent in vitro degradation of ubiquitylated and non-ubiquitylated proteins and did not display substrate-stimulated ATPase and peptidase activities characteristic of normal proteasomes. These results reveal differential roles of ATP binding by various Rpt subunits in proteasome assembly and function. They also indicate that substrate-stimulated ATPase activity and gating depend on the concerted action of a full complement of Rpt subunits competent for ATP binding and that this regulation is essential for normal proteolysis. Thus, protein substrates appear to promote their own degradation by stimulating proteasome functions involved in proteolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561553PMC
http://dx.doi.org/10.1074/jbc.M112.424788DOI Listing

Publication Analysis

Top Keywords

atp binding
20
cellular assembly
12
rpt subunits
12
rpt5 rpt6
8
atpase activity
8
substrate-stimulated atpase
8
atp
5
assembly
5
proteasome
5
binding proteasomal
4

Similar Publications

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

The permeability transition (PT) is a permeability increase of the mitochondrial inner membrane causing mitochondrial swelling in response to matrix Ca. The PT is mediated by regulated channel(s), the PT pore(s) (PTP), which can be generated by at least two components, adenine nucleotide translocator (ANT) and ATP synthase. Whether these provide independent permeation pathways remains to be established.

View Article and Find Full Text PDF

MiRNAs: main players of cancer drug resistance target ABC transporters.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters.

View Article and Find Full Text PDF

Schistosomiasis is the infection caused by and constitutes a worldwide public health problem. The parasitological recommended method and serological methods can be used for the detection of eggs and antibodies, respectively. However, both have limitations, especially in low endemicity areas.

View Article and Find Full Text PDF

We present two innovative approaches to investigate the dynamics of membrane fusion and the strength of protein-membrane interactions. The first approach employs pore-spanning membranes (PSMs), which allow for the observation of protein-assisted fusion processes. The second approach utilizes colloidal probe microscopy with membrane-coated probes with reconstituted proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!