Background: Since 2007, it is mandatory for the pharmaceutical companies to submit a Paediatric Investigation Plan to the Paediatric Committee at the European Medicines Agency for any drug in development in adults, and it often leads to the need to conduct a pharmacokinetic study in children. Pharmacokinetic studies in children raise ethical and methodological issues. Because of limitation of sampling times, appropriate methods, such as the population approach, are necessary for analysis of the pharmacokinetic data. The choice of the pharmacokinetic sampling design has an important impact on the precision of population parameter estimates. Approaches for design evaluation and optimization based on the evaluation of the Fisher information matrix (M(F)) have been proposed and are now implemented in several software packages, such as PFIM in R.

Objectives: The objectives of this work were to (1) develop a joint population pharmacokinetic model to describe the pharmacokinetic characteristics of a drug S and its active metabolite in children after intravenous drug administration from simulated plasma concentration-time data produced using physiologically based pharmacokinetic (PBPK) predictions; (2) optimize the pharmacokinetic sampling times for an upcoming clinical study using a multi-response design approach, considering clinical constraints; and (3) evaluate the resulting design taking data below the lower limit of quantification (BLQ) into account.

Methods: Plasma concentration-time profiles were simulated in children using a PBPK model previously developed with the software SIMCYP(®) for the parent drug and its active metabolite. Data were analysed using non-linear mixed-effect models with the software NONMEM(®), using a joint model for the parent drug and its metabolite. The population pharmacokinetic design, for the future study in 82 children from 2 to 18 years old, each receiving a single dose of the drug, was then optimized using PFIM, assuming identical times for parent and metabolite concentration measurements and considering clinical constraints. Design evaluation was based on the relative standard errors (RSEs) of the parameters of interest. In the final evaluation of the proposed design, an approach was used to assess the possible effect of BLQ concentrations on the design efficiency. This approach consists of rescaling the M(F), using, at each sampling time, the probability of observing a concentration BLQ computed from Monte-Carlo simulations.

Results: A joint pharmacokinetic model with three compartments for the parent drug and one for its active metabolite, with random effects on four parameters, was used to fit the simulated PBPK concentration-time data. A combined error model best described the residual variability. Parameters and dose were expressed per kilogram of bodyweight. Reaching a compromise between PFIM results and clinical constraints, the optimal design was composed of four samples at 0.1, 1.8, 5 and 10 h after drug injection. This design predicted RSE lower than 30 % for the four parameters of interest. For this design, rescaling M(F) for BLQ data had very little influence on predicted RSE.

Conclusion: PFIM was a useful tool to find an optimal sampling design in children, considering clinical constraints. Even if it was not forecasted initially by the investigators, this approach showed that it was really necessary to include a late sampling time for all children. Moreover, we described an approach to evaluate designs assuming expected proportions of BLQ data are omitted.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40262-012-0022-9DOI Listing

Publication Analysis

Top Keywords

clinical constraints
16
sampling times
12
design
12
drug active
12
active metabolite
12
considering clinical
12
parent drug
12
pharmacokinetic
10
drug
9
optimal sampling
8

Similar Publications

Background: Supernumerary digits, or polydactyly, have been described in various species including humans, wild and domestic animals. In horses, it represents the most common congenital limb malformation, which has only been described in isolated cases or nuclear families. Molecular aetiology has not been reported.

View Article and Find Full Text PDF

: Co-Design of a Novel Approach for Engaging People with Dementia in Physical Activity.

Nurs Rep

December 2024

Rehabilitation, Ageing and Independent Living (RAIL) Research Centre, Monash University, Frankston, VIC 3199, Australia.

Background: Promoting physical activity among people living with dementia is critical to maximise physical, cognitive and social benefits; yet the lack of knowledge, skills and confidence among health professionals, informal care partners and people with dementia deters participation. As the initial phase of a larger feasibility study, co-design was employed to develop a new model of community care, to facilitate the physical activity participation of older people living with mild dementia.

Methods: Co-design methodology was utilised with nine stakeholders (with experience in referring to or providing physical activity programs and/or contributing to policy and program planning) over three workshops plus individual interviews with four care partners of people with dementia.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is one of the most aggressive and lethal malignancies, calling for enhanced research. Pancreatic ductal adenocarcinoma (PDAC) represents 70-80% of all cases and is known for its resistance to conventional therapies. Carbon-ion radiotherapy (CIRT) has emerged as a promising approach due to its ability to deliver highly localized doses and unique radiobiological properties compared to X-rays.

View Article and Find Full Text PDF

(1) Background: Volumetric modulated arc therapy (VMAT) can deliver more accurate dose distribution and reduce radiotherapy-induced toxicities for postoperative cervical and endometrial cancer. This study aims to retrospectively analyze the relationship between dosimetric parameters of organs at risk (OARs) and acute toxicities and provide suggestions for the dose constraints. (2) Methods: A total of 164 postoperative cervical and endometrial cancer patients were retrospectively analyzed, and the endpoints were grade ≥ 2 acute urinary toxicity (AUT) and acute lower gastrointestinal toxicity (ALGIT).

View Article and Find Full Text PDF

Background/aim: Currently, there are limited evidence-based protocols for improving upper extremity (UE) motor function after stroke. The Keys protocol, a distributed form of constraint-induced movement therapy (CIMT), delivers CIMT components in fewer hours per day over an extended period, fitting outpatient rehabilitation schedules and third-party payor models. This pilot study aimed to assess the effectiveness of the Keys protocol in enhancing UE capacity and performance poststroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!