Protein quality control is essential for cellular survival. Failure to eliminate pathogenic proteins leads to their intracellular accumulation in the form of protein aggregates. Autophagy can recognize protein aggregates and degrade them in lysosomes. However, some aggregates escape the autophagic surveillance. Here we analyse the autophagic degradation of different types of aggregates of synphilin-1, a protein often found in pathogenic protein inclusions. We show that small synphilin-1 aggregates and large aggresomes are differentially targeted by constitutive and inducible autophagy. Furthermore, we identify a region in synphilin-1, necessary for its own basal and inducible aggrephagy and sufficient for the degradation of other pro-aggregating proteins. Although the presence of this peptide is sufficient for basal aggrephagy, inducible aggrephagy requires its ubiquitination, which diminishes protein mobility on the surface of the aggregate and favours the recruitment and assembly of the protein complexes required for autophagosome formation. Our study reveals different mechanisms for cells to cope with aggregate proteins via autophagy and supports the idea that autophagic susceptibility of prone-to-aggregate proteins may not depend on the nature of the aggregating proteins per se, but on their dynamic properties in the aggregate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526956PMC
http://dx.doi.org/10.1038/ncomms2244DOI Listing

Publication Analysis

Top Keywords

protein
8
protein inclusions
8
protein aggregates
8
inducible aggrephagy
8
proteins
5
aggregates
5
molecular determinants
4
determinants selective
4
selective clearance
4
clearance protein
4

Similar Publications

Protein prenylation in mechanotransduction: implications for disease and therapy.

Trends Pharmacol Sci

January 2025

Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:

The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins.

View Article and Find Full Text PDF

Background And Study Aims: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates. In vitro model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of different stress factors on intestinal injury in vitro.

View Article and Find Full Text PDF

Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1.

View Article and Find Full Text PDF

Unfolded protein response modulates Tyrosinase levels and melanin production during melanogenesis.

J Dermatol Sci

January 2025

Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan. Electronic address:

Background: Melanocytes protect the body from ultraviolet radiation by synthesizing melanin. Tyrosinase, a key enzyme in melanin production, accumulates in the endoplasmic reticulum (ER) during melanin synthesis, potentially causing ER stress. However, regulating ER function for melanin synthesis has been less studied than controlling Tyrosinase activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!