Variable degrees of molecular degradation occur in human surgical specimens before clinical examination and severely affect analytical results. We therefore initiated an investigation to identify protein markers for tissue degradation assessment. We exposed 4 cell lines and 64 surgical/autopsy specimens to defined periods of time at room temperature before procurement (experimental cold ischemic time (CIT)-dependent tissue degradation model). Using two-dimensional fluorescence difference gel electrophoresis in conjunction with mass spectrometry, we performed comparative proteomic analyses on cells at different CIT exposures and identified proteins with CIT-dependent changes. The results were validated by testing clinical specimens with western blot analysis. We identified 26 proteins that underwent dynamic changes (characterized by continuous quantitative changes, isoelectric changes, and/or proteolytic cleavages) in our degradation model. These changes are strongly associated with the length of CIT. We demonstrate these proteins to represent universal tissue degradation indicators (TDIs) in clinical specimens. We also devised and implemented a unique degradation measure by calculating the quantitative ratio between TDIs' intact forms and their respective degradation-modified products. For the first time, we have identified protein TDIs for quantitative measurement of specimen degradation. Implementing these indicators may yield a potentially transformative platform dedicated to quality control in clinical specimen analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/labinvest.2012.164 | DOI Listing |
Crit Care Explor
February 2025
Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.
Objectives: Sepsis is a life-threatening medical emergency, with a profound healthcare burden globally. Its pathophysiology is complex, heterogeneous and temporally dynamic, making diagnosis challenging. Medical management is predicated on early diagnosis and timely intervention.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
Trophic factors, such as neurotrophins, are fundamental for cellular processes including differentiation, growth, survival, and regeneration. These molecules exhibit significant morphological and phylogenetic conservation throughout the animal kingdom, indicating conserved functions. In fish, the oldest and most diverse group of vertebrates, neurotrophins, and their receptors play pivotal roles not only within the central nervous system but also in various peripheral tissues.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
January 2025
Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
Background: 4-(4-Cyanophenyl)-2-(2-cyclopentylidenehydrazinyl)thiazole (remodelin) is a potent N-acetyltransferase 10 (NAT10) inhibitor. This compound inhibits tumors and weakens tumor resistance to antitumor drugs. Moreover, remodelin has been found to enhance healthspan in an animal model of the human accelerated ageing syndrome.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition encompassing metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). The heterogeneous and complex nature of MASLD complicates optimal drug development. Ebastine, an antihistamine, exhibits antitumor activity in various types of cancer.
View Article and Find Full Text PDFJ Crohns Colitis
January 2025
Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Background And Aim: Creeping fat (CF) in Crohn's disease (CD) is characterized by hyperplastic mesenteric adipose tissue (MAT) encasing fibrotic intestinal segments. CF exhibits disruptions in microbiota and lipid metabolism, particularly in lysophospholipids (LPC). This study aims to elucidate the impact of LPC on adipogenic differentiation of mesenchymal stem cells in CF and its effects on immune defense functions in the differentiated adipocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!