The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) plays multiple roles in the enteric, peripheral, and central nervous systems (CNS). Although its most prominent biological function is as a signal transmission messenger from pre- to postsynaptic neurons, other roles such as shaping brain development and regulating neurite growth have also been described. Here, we review the less well-studied role of 5-HT as a modulator of neurite growth. 5-HT has been shown to regulate neurite growth in multiple systems and species, including in the mammalian CNS. 5-HT predominantly appears to suppress neurite growth, but depending on the model system and 5-HT receptor subtype, in rare cases, it may promote neurite outgrowth and elongation. Failure of axon regeneration in the adult mammalian CNS is a major problem in multiple diseases, and understanding how 5-HT receptors signal opposing effects on neurite growth may lead to novel neuroregenerative therapies, by targeting either 5-HT receptors or their downstream signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-407178-0.00005-3 | DOI Listing |
J Pharmacokinet Pharmacodyn
January 2025
Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.
Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021].
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Anatomy, College of Medicine, Inje University, Busan 47392, Republic of Korea.
Background/objectives: α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated.
View Article and Find Full Text PDFBiomacromolecules
January 2025
School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.
Three chondroitin sulfate (CS) analogues with predominant subtypes (A, C, and E) were prepared from engineered K4 combined with regioselective sulfation. CS with the designed sulfates as the main components was characterized by nuclear magnetic resonance spectroscopy, elementary analysis, and disaccharide analysis. CS prepared from the native or degraded capsular polysaccharide had molecular weights of 1.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
Background: Pleiotrophin (PTN), a secreted multifunctional growth factor, is highly expressed in the developing brain. Recently, many studies have indicated that PTN participates in the development of brain and plays a neuroprotection after brain injury, especially promoting neuronal survival and neurite outgrowth, stimulating oligodendrocyte maturation and myelination, modulating neuroinflammation, and so on.
Objective: However, no reviews comprehensively summarize the roles of PTN in brain injuries.
PLoS Genet
January 2025
Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!