Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranol detection.

Biosens Bioelectron

School of Resources and Environmental Sciences, University of Jinan, Jinan 250022, PR China.

Published: April 2013

Nanoporous PtCo alloy was designed as an antibody carrier for preparation of a highly sensitive immunosensor. The immunosensor was constructed by assembling the capture zeranol antibody on thionine decorated graphene nanosheets modified glassy carbon electrode. With an enzyme-free immunosensor mode, the nanoporous PtCo alloy, synthesized by dealloying method, had shown strong electrocatalytic activity toward antigen-antibody reaction. The use of PtCo alloy carrier offered a high amount of antibody on each immunoconjugate, hence amplified the detectable signal from the electro-reaction of dissolved oxygen. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the recognition of zeranol. Due to the poor conductivity of zeranol, a small amount of zeranol immobilized onto the electrode could result in great change in the electron-transfer resistance. Some factors that would affect the performance of the immunosensor were studied, such as concentration of PtCo, pH, and the ratio of TH to GS. With zeranol concentration range (0.05 to 5.0 ng/mL), the immunosensor exhibited a highly sensitive response to zeranol with a detection limit of 13 pg/mL. The immunosensor was evaluated for bovine urine sample, receiving satisfactory results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2012.10.031DOI Listing

Publication Analysis

Top Keywords

ptco alloy
12
enzyme-free immunosensor
8
zeranol detection
8
nanoporous ptco
8
highly sensitive
8
immunosensor
7
zeranol
7
nanoporous ptco-based
4
ptco-based ultrasensitive
4
ultrasensitive enzyme-free
4

Similar Publications

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Low-temperature direct ammonia fuel cell (DAFC) stands out as a more secure technology than the hydrogen fuel cell system, while there is still a lack of elegant bottom-up synthesis procedures for efficient ammonia oxidation reaction (AOR) electrocatalysts. The widely accepted d-band center, even with consideration of the d-band width, usually fails to describe variations in AOR reactivity in many practical conditions, and a more accurate activity descriptor is necessary for a less empirical synthesis path. Herein, the upper d-band edge, ε, derived from the d-band model, is identified as an effective descriptor for accurately establishing the descriptor-activity relationship.

View Article and Find Full Text PDF

It is a great challenge to prepare efficient and stable electrocatalysts for hydrogen evolution (HER) using non-precious metals. In this study, a series of PtCo/TiCT-Y (Y: 16, 32, and 320, Y indicates the quality of Co(NO)) catalysts were synthesized by loading PtCo alloy on TiCT. The PtCo/TiCT-32 catalyst showed the best HER performance, reaching a current density of 10 mA cm with low overpotential (36 and 101 mV) and small Tafel slopes (66.

View Article and Find Full Text PDF

2D Carbon-Anchored Platinum-Based Nanodot Arrays as Efficient Catalysts for Methanol Oxidation Reaction.

Small Methods

December 2024

Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.

Article Synopsis
  • Ultrafine Pt-based alloy nanoparticles supported on carbon are promising for catalysis but struggle with stability issues that limit their use.
  • A new approach uses nanodot arrays where these nanoparticles are securely implanted in a 2D carbon substrate, leading to high methanol oxidation reaction activity and improved stability.
  • This innovative anchoring method optimizes their electronic structure, reduces nanoparticle migration, and prevents transition metal dissolution, paving the way for more durable and effective catalytic materials.
View Article and Find Full Text PDF

Atomically ordered intermetallic Pt-based nanoparticles, recognized as advanced electrocatalysts, exhibit superior activity for the oxygen reduction reaction (ORR) in fuel cell cathodes. Nevertheless, the formation of these ordered structures typically necessitates elevated annealing temperatures, which can accelerate particle growth and diminished reactivity. In this study, we synthesized carbon-supported platinum-cobalt intermetallic compounds (PtCo-IMCs) with sub-4 nm particle sizes and uniform distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!