Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration.

Nanomedicine (Lond)

Institute of Oral Biology, Department of Orofacial Development & Regeneration, ZZM, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Published: November 2012

Regenerative dentistry represents an attractive multidisciplinary therapeutic approach that complements traditional restorative/surgery techniques and benefits from recent advances in stem cell biology, molecular biology, genomics and proteomics. Materials science is important in such advances to move regenerative dentistry from the laboratory to the clinic. The design of novel nanostructured materials, such as biomimetic matrices and scaffolds for controlling cell fate and differentiation, and nanoparticles for diagnostics, imaging and targeted treatment, is needed. The combination of nanotechnology, which allows the creation of sophisticated materials with exquisite fine structural detail, and stem cell biology turns out to be increasingly useful in regenerative medicine. The administration to patients of dynamic biological agents comprising stem cells, bioactive scaffolds and/or nanoparticles will certainly increase the regenerative impact of dental pathological tissues. This overview briefly describes some of the actual benefits and future possibilities of nanomaterials in the emerging field of stem cell-based regenerative dentistry.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.12.146DOI Listing

Publication Analysis

Top Keywords

regenerative dentistry
12
nanostructured materials
8
stem cells
8
stem cell
8
cell biology
8
stem
5
regenerative
5
nanodentistry combining
4
combining nanostructured
4
materials
4

Similar Publications

(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed to evaluate the morphological and chemical properties of porcine collagen membranes from five different tissue sources: skin, pericardium, dermis, tendons, and peritoneum.

View Article and Find Full Text PDF

A high prognostic nutritional index (PNI) is associated with good prognosis in patients with esophageal cancer. However, nutritional status often decreases during neoadjuvant therapy. Functional tooth units (FTUs) provide an index for the status of posterior occlusal support.

View Article and Find Full Text PDF

Histological Evaluation of Sodium Iodide-Based Root Canal Filling Materials in Canine Teeth.

Materials (Basel)

December 2024

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea.

A novel water-soluble root canal filling material based on sodium iodide (NaI) has been developed to overcome the limitations of existing iodine-based formulations. However, the biological stability of this approach in animal studies remains unverified. This study evaluated the biocompatibility of NaI compared to commercial root canal filling materials (Calcipex II and Vitapex) in pulpectomized canine teeth to assess its clinical applicability.

View Article and Find Full Text PDF

Regenerative medicine and tissue engineering aim to restore or replace impaired organs and tissues using cell transplantation supported by scaffolds. Recently scientists are focusing on developing new biomaterials that optimize cellular attachment, migration, proliferation, and differentiation. Nanoparticles, such as graphene oxide (GO), have emerged as versatile materials due to their high surface-to-volume ratio and unique chemical properties, such as electrical conductivity and flexibility.

View Article and Find Full Text PDF

Exploring the Antioxidant Mechanisms of Nanoceria in Protecting HT22 Cells from Oxidative Stress.

Int J Mol Sci

December 2024

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea.

An excess of reactive oxygen species (ROS), leading to oxidative stress, is a major factor in aging. Antioxidant therapies are considered crucial for delaying aging. Nanoceria, a nanozyme with antioxidant activity, holds significant potential in protecting cells from oxidative stress-induced damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!