The combination of organic and inorganic molecular building blocks gives rise to hybrid supramolecular materials showing properties from both chemical domains. This work presents the synthesis of metallopolymers made from poly(4-vinylpyridine) (P4VP) and pentacyanoferrate(II) at various polymer repeating unit/[Fe(CN)(5)](3-) ratios (py/Fe) and focuses on the influence of each block on the properties of the other. The solvatochromic shift of the [Fe(CN)(5)](3-) moiety was investigated as a function of the py/Fe ratio and the water molar fraction (X(H(2)O)) of the ethanol/water medium. Asymmetric solvation favoring ethanol was enhanced as the py/Fe ratio increased. The results lead to a modification of the well-established thermodynamical model for asymmetrical solvation and suggest the formation of water-rich domains within the polymer coils with a large number of [Fe(CN)(5)](3-) units. From the macromolecular perspective, the increase of [Fe(CN)(5)](3-) units resulted in higher values of intrinsic viscosity, which is rationalized by the increase of the polymer coil charge density and therefore the increase in hydrodynamic volume due to repulsive electrical forces. Evaluating the intrinsic viscosity of a sample with py/Fe = 25 in solvent mixtures with different water molar fractions, it was found that the hydrodynamic volume is maximized at intermediate X(H(2)O) values, where both the ethanol-soluble uncomplexed polymer block and the water-soluble [Fe(CN)(5)](3-)-pendant units can be suitably solvated, preventing coil shrinkage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp308583aDOI Listing

Publication Analysis

Top Keywords

py/fe ratio
8
water molar
8
[fecn5]3- units
8
intrinsic viscosity
8
hydrodynamic volume
8
supramolecular interactions
4
interactions inorganic
4
inorganic organic
4
organic blocks
4
blocks pentacyanoferrate/poly4-vinylpyridine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!