Background/aim: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency.

Methods: HCT116 and HCT116+chr3 (both MSH3-deficient) and primary human colon epithelial cells (HCEC, MSH3-wildtype) were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs) were assessed by Comet assay.

Results: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4)) at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50), apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold.

Conclusions: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507781PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050541PLOS

Publication Analysis

Top Keywords

oncogenic transformation
16
human colon
16
colon epithelial
12
epithelial cells
12
hct116 hct116+chr3
8
frameshift mutations
8
mutations [aaag]17
8
double strand
8
[aaag]17 repeats
8
proteins involved
8

Similar Publications

Background: Alzheimer's disease (AD) is associated with cognitive impairment and neuro-inflammation. Dysregulated activation of microglia and astrocytes induces neuro-inflammation, and reactive astrocytes have been classified into A1 neurotoxic and A2 neuroprotective phenotypes. A1 astrocytes are induced by activated neuro-inflammatory microglia via secreting IL-1α, TNFα and C1q, and contributing to inflammation and neuronal cell death.

View Article and Find Full Text PDF

Viral oncogene EBNALP regulates YY1 DNA binding and alters host 3D genome organization.

EMBO Rep

January 2025

Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP's role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques.

View Article and Find Full Text PDF

A stromal inflammasome Ras safeguard against Myc-driven lymphomagenesis.

Nat Immunol

January 2025

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice.

View Article and Find Full Text PDF

Overexpression of the myeloid Src-family kinases Fgr and Hck has been linked to the development of acute myeloid leukemia (AML). Here we characterized the contribution of active forms of these kinases to AML cell cytokine dependence, inhibitor sensitivity, and AML cell engraftment in vivo. The human TF-1 erythroleukemia cell line was used as a model system as it does not express endogenous Hck or Fgr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!