In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507948 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049975 | PLOS |
J Vis
January 2025
Department of Psychology, New York University, New York, NY, USA.
Active object recognition, fundamental to tasks like reading and driving, relies on the ability to make time-sensitive decisions. People exhibit a flexible tradeoff between speed and accuracy, a crucial human skill. However, current computational models struggle to incorporate time.
View Article and Find Full Text PDFeNeuro
January 2025
Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Epilepsy, a neurological disorder characterized by recurrent unprovoked seizures, significantly impacts patient quality of life. Current classification methods focus primarily on clinical observations and electroencephalography (EEG) analysis, often overlooking the underlying dynamics driving seizures. This study uses surface EEG data to identify seizure transitions using a dynamical systems-based framework-the taxonomy of seizure dynamotypes-previously examined only in invasive data.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
The nano-self-assembly of natural organic matter (NOM) profoundly influences the occurrence and fate of NOM and pollutants in large-scale complex environments. Machine learning (ML) offers a promising and robust tool for interpreting and predicting the processes, structures and environmental effects of NOM self-assembly. This review seeks to provide a tutorial-like compilation of data source determination, algorithm selection, model construction, interpretability analyses, applications and challenges for big-data-based ML aiming at elucidating NOM self-assembly mechanisms in environments.
View Article and Find Full Text PDFJ Clin Invest
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center - Zhongshan School of Medicine.
Nasopharyngeal carcinoma (NPC) presents a substantial clinical challenge due to the limited understanding of its genetic underpinnings. Here we conduct the largest scale whole-exome sequencing association study of NPC to date, encompassing 6,969 NPC cases and 7,100 controls. We unveil 3 germline genetic variants linked to NPC susceptibility: a common rs2276868 in RPL14, a rare rs5361 in SELE, and a common rs1050462 in HLA-B.
View Article and Find Full Text PDFTheranostics
January 2025
College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
Hypoxia is a major obstacle in the treatment of solid tumors because it causes immune escape and therapeutic resistance. Drug penetration into the hypoxic regions of tumor microenvironment (TME) is extremely limited. This study proposes using the unidirectional fluid flow property of low-intensity pulsed ultrasound (LIPUS) to overcome drug penetration limitations in the TME.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!