Graphene nanomaterials are typically used in biosensing applications, and they have been demonstrated as good fluorescence quenchers. While many conventional amplification platforms are available, developing new nanomaterials and establishing simple, enzyme-free and low-cost strategies for high sensitivity biosensing is still challenging. Therefore, in this work, a core-shell magnetic graphitic nanocapsule (MGN) material is synthesized and its capabilities for the detection of biomolecules are investigated. MGN combines the unique properties of graphene and magnetic particles into one simple and sensitive biosensing platform, which quenches around 98% of the dye fluorescence within minutes. Based on a programmed multipurpose DNA capturing and releasing strategy, the MGN sensing platform demonstrates an outstanding capacity to fish, enrich, and detect DNA. Target DNA molecules as low as 50 pM could be detected, which is 3-fold lower than the limit of detection commonly achieved by carbon nanotube and graphene-based fluorescent biosensors. Moreover, the MGN platform exhibits good sensing specificity against DNA mismatch tests. Overall, therefore, these magnetic graphitic nanocapsules demonstrate a promising tool for molecular disease diagnosis and biomedicine. This simple fishing and enrichment strategy may also be extended to other biological and environmental applications and systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201201975 | DOI Listing |
ACS Nano
January 2025
The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan.
The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.
View Article and Find Full Text PDFNature
January 2025
Department of Physics, Columbia University, New York, NY, USA.
The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).
View Article and Find Full Text PDFFood Chem
January 2025
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China. Electronic address:
Tert-butylhydroquinone (TBHQ) is a widely used synthetic phenolic antioxidant found in edible oils and other fried foods. Nevertheless, the excess use of TBHQ can reduce food quality and impact public health. In this paper, we reported the synthesis of a nanocomposite consisting of carbon and nitrogen co-doped nickel oxide (NiO-N/C-700), which was used to modify a pencil graphite electrode for the sensitive detection of TBHQ.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Chemistry, University of Isfahan, Isfahan, Iran.
Quercetin, a key flavonoid found in many fruits and vegetables, offers notable health benefits, including antioxidant, antiviral, and antitumor properties. Yet, isolating it from complex plant materials is challenging. This research aimed to develop a selective and efficient sorbent to clean up real sample matrices and pre-concentrate quercetin, enhancing its detection using high-performance liquid chromatography (HPLC).
View Article and Find Full Text PDFBrain Commun
November 2024
Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Moyamoya is a non-atherosclerotic intracranial steno-occlusive condition that places patients at high risk for ischaemic stroke. Randomized trials of surgical revascularization demonstrating efficacy in ischaemic moyamoya have not been performed, and as such, biomarkers of parenchymal haemodynamic impairment are needed to assist with triage and evaluate post-surgical response. In this prospective study, we test the hypothesis that parenchymal cerebrovascular reactivity (CVR) metrics in response to a fixed-inspired 5% carbon dioxide challenge correlate with recent focal ischaemic symptoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!