A rapid and simple gas chromatography-mass spectrometry (GC-MS) method was developed and validated to identify and quantify synthetic cannabinoids in the materials seized during drug trafficking. Accuracy and reproducibility of the method were improved by using deuterated JWH-018 and JWH-073 as internal standards. Validation results of the GC-MS method showed that it was suitable for simultaneous qualitative and quantitative analyses of synthetic cannabinoids, and we analyzed synthetic cannabinoids in seized materials using the validated GC-MS method. As a result of the analysis, ten species of synthetic cannabinoids were identified in dried leaves (n = 40), bulk powders (n = 6), and tablets (n = 14) seized in Korea during 2009-2012, as a single ingredient or as a mixture with other active co-ingredients. JWH-018 and JWH-073 were the most frequently identified compounds in the seized materials. Synthetic cannabinoids in the dried leaves showed broad concentration ranges, which may cause unexpected toxicity to abusers. The bulk powders were considered as raw materials used to prepare legal highs, and they contained single ingredient of JWH-073, JWH-019, or JWH-250 with the purity over 70 %. In contrast, JWH-018 and JWH-073 contents in the tablets were 7.1-13.8 and 3.0-10.2 mg/g, respectively. Relatively low contents in the tablets suggest that the synthetic cannabinoids may have been added to the tablets as supplements to other active co-ingredients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-012-6560-zDOI Listing

Publication Analysis

Top Keywords

synthetic cannabinoids
28
gc-ms method
12
jwh-018 jwh-073
12
cannabinoids materials
8
materials seized
8
seized drug
8
drug trafficking
8
seized materials
8
dried leaves
8
bulk powders
8

Similar Publications

Patterns of Nabilone Prescriptions in Canadian Long-Term Care Facilities.

Can J Aging

December 2024

Department of Psychology and Centre on Aging and Health, University of Regina, Regina, SK, Canada.

The purpose of the current study was to understand the prevalence and patterns of cannabinoid use among LTC residents across Canada. We gathered data on cannabinoid prescriptions among LTC residents for one year before and after recreational cannabis legalization. Multi-level modelling was used to examine the effects of demographic and diagnostic characteristics on rates of cannabinoid prescription over time.

View Article and Find Full Text PDF

The cannabinoid receptor 1 (CB1) is an essential component of the endocannabinoid system, responsible for regulating various physiological processes such as pain, mood, and appetite. Despite increasing interest in the therapeutic potential of CB1 modulators, the precise mechanisms by which small molecules modulate receptor activity-particularly without fully transitioning between active and inactive states-remain partially understood. In this study, the complexity of CB1-ligand interactions was evaluated for the inactive CB1 state.

View Article and Find Full Text PDF

Although Cannabis sativa L. is well known for being prolific in phytocannabinoids, their biosynthetic modular mechanism is ruled by a main enzyme: the geranyltransferase able to pursue the C-isoprenylation of olivetolic acid with the geranyldiphosphate. However, the existence of more than 160 meroterpenoids can be partially explained by a side degree of promiscuity of the geranyltransferase itself, able to recognise different substrate than the ordinary ones.

View Article and Find Full Text PDF

Although several studies have well described the characteristics of people who use psychedelics alongside their motivations and beliefs, little research has examined the preferences surrounding the source of psychedelic substances. In an anonymous online survey, we collected data from 6,379 consumers of 11 different psychedelic substances from 85 different countries, exploring their preferences and perceptions on natural and synthetic psychedelics. There was a strong preference of natural sources over synthetic alternatives for psilocybin (75%), DMT (56%), and mescaline (56%).

View Article and Find Full Text PDF

The endocannabinoid system in the brain undergoes long-lasting changes following neuropathic pain.

iScience

December 2024

Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China.

The endocannabinoid system (ECS), which is composed of endocannabinoids (eCBs), cannabinoid receptors (CBRs), and associated signaling molecules, has been identified within the brain. In neuropathic pain animal models and patients, long-lasting alterations in the ECS have been observed. These changes of neurons and glial cells in the ECS contribute to the modulation of neuropathic pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!