Neisseria meningitidis is a pathogenic bacterium responsible for meningitis. The mechanisms underlying the control of Na(+) transmembrane movement, presumably important to pathogenicity, have been barely addressed. To elucidate the function of the components of the Na(+) transport system in N. meningitidis, an open reading frame from the genome of this bacterium displaying similarity with the NhaE type of Na(+)/H(+) antiporters was expressed in Escherichia coli and characterized for sodium transport ability. The N. meningitidis antiporter (NmNhaE) was able to complement an E. coli strain devoid of Na(+)/H(+) antiporters (KNabc) respecting the ability to grow in the presence of NaCl and LiCl. Ion transport assays in everted vesicles prepared from KNabc expressing NmNhaE from a plasmid confirmed its ability to translocate Na(+) and Li(+). Here is presented the characterization of the first NhaE from a pathogen, an important contribution to the comprehension of sodium ion metabolism in this kind of microorganisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-012-0856-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!