Morphological and morphometric variability of the squid Lolliguncula brevis (Mollusca: Cephalopoda) in Brazilian waters: evidence for two species in the Western Atlantic?

An Acad Bras Cienc

Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil.

Published: December 2012

Morphological and morphometric variability of the small-sized coastal squid Lolliguncula brevis was assessed along the largest part of its latitudinal range in the southern hemisphere, off the Brazilian coast (8º S - 27º S). A general homogeneity in form was found throughout the entire latitudinal range. In terms of body proportions, no latitudinal gradients were evident, but a few local "morphotypes" could be distinguished. The distinctive egg mass morphology, and size and form features, including a hectocotylus 20-40% longer than the opposing ventral arm and the presence of suckers on the buccal membrane, indicated that Lolliguncula from northern and southern hemispheres might comprise two different taxa.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s0001-37652012000400016DOI Listing

Publication Analysis

Top Keywords

morphological morphometric
8
morphometric variability
8
squid lolliguncula
8
lolliguncula brevis
8
latitudinal range
8
variability squid
4
brevis mollusca
4
mollusca cephalopoda
4
cephalopoda brazilian
4
brazilian waters
4

Similar Publications

Is cranial anatomy indicative of fossoriality? A case study of the mammaliaform Hadrocodium wui.

Anat Rec (Hoboken)

January 2025

School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.

Determining the ecology of fossil species presents considerable challenges due to the often fragmentary preservation of specimens. The mammaliaform Hadrocodium wui from the Jurassic of China is known only from the cranium and mandible but may have had a fossorial lifestyle. It shares morphological similarities with talpid moles and soricid shrews and is closely related to other fossorial mammaliaforms.

View Article and Find Full Text PDF

Background: Freshwater fish are affected with much parasitic diseases, among the most common are Henneguyosis caused by myxozoans of the genus Henneguya, which exhibit great diversity in fish from South America, particularly in the Brazilian Amazon.

Purpose: In this present study, we describe the morphological and phylogenetic aspects of the small ribosomal subunit (SSU rDNA) of two new species of Henneguya infecting the gills from Hypophthalmus marginatus, a freshwater catfish from the Amazon.

Methods: In 148 specimens, has been observed cyst formation in different regions of the gills, intrafilamentary and intralamellar.

View Article and Find Full Text PDF

Objective: To investigate the altered characteristics of cortical morphology and individual-based morphological brain networks in type 2 diabetes mellitus (T2DM), as well as the neural network mechanisms underlying cognitive impairment in T2DM.

Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were recruited in this study. The study used voxel- and surface-based morphometric analyses to investigate morphological alterations (including gray matter volume, cortical thickness, cortical surface area, and localized gyrus index) in the brains of T2DM patients.

View Article and Find Full Text PDF

Spiny pocket mice are usually divided into two genera, Heteromys and Liomys, and more recently the latter have been subsumed into the former, leaving subfamily Heteromyinae with one genus. However, this arrangement conveys false equivalency among heteromyines, and does not represent the great morphological, molecular, and ecological diversity in this subfamily. To address this, geometric morphometric methods were used to explore interspecific cranial variation in this subfamily, which were then evaluated in the context of recent phylogenetic and taxonomic findings.

View Article and Find Full Text PDF

Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Embryos.

J Xenobiot

January 2025

Laboratoire de Biologie du Développement (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), 06230 Villefranche-sur-Mer, France.

Nanoplastics pose a growing threat to marine ecosystems, particularly affecting the early developmental stages of marine organisms. This study investigates the effects of amino-modified polystyrene nanoparticles (PS-NH, 50 nm) on the embryonic development of , a model ascidian species. Both chorionated and dechorionated embryos were exposed to increasing concentrations of PS-NH so morphological alterations could be assessed with a high-content analysis of the phenotypes and genotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!