Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1α short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91(phox)) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589149 | PMC |
http://dx.doi.org/10.1038/mt.2012.249 | DOI Listing |
Neurology
February 2025
Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong, People's Republic of China.
Background And Objectives: Mitochondrial disorders are multiorgan disorders resulting in significant morbidity and mortality. We aimed to characterize death-associated factors in an international cohort of deceased individuals with mitochondrial disorders.
Methods: This cross-sectional multicenter observational study used data provided by 26 mitochondrial disease centers from 8 countries from January 2022 to March 2023.
Proc Natl Acad Sci U S A
February 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200438, China.
Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named (), harboring a mutation in the - () gene. Loss of leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration.
View Article and Find Full Text PDFPLoS One
January 2025
Cell Therapy Center, The University of Jordan, Amman, Jordan.
Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.
View Article and Find Full Text PDFInflammation
January 2025
Department of Nephrology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, 233000, Anhui Province, China.
Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!