We have previously identified a tyrosine kinase-independent, guanine nucleotide exchange factor (GEF) activity, which is contained within the region of p210 no expansion BCR/ABL that distinguishes it from p190 BCR/ABL. In the current study, we have compared the transforming activity of p190 BCR/ABL, p210 BCR/ABL and a mutant that lacks GEF activity (p210 BCR/ABL(S509A)). In cell-based, ex vivo, and murine bone marrow transplantation (BMT) assays the transforming activity of p210 BCR/ABL(S509A) mimics p190 BCR/ABL, and is distinct from p210 BCR/ABL. Thus, in the BMT assay, the p190 BCR/ABL- and p210 BCR/ABL(S509A)-transplanted mice exhibit a more rapid onset of disease than mice transplanted with p210 BCR/ABL. The reduced disease latency is associated with erythroid hyperplasia in the absence of anemia, and expansion of the megakaryocyte-erythrocyte progenitor (MEP), common myeloid progenitor (CMP) and granulocyte-macrophage progenitor (GMP) populations, producing a phenotype that is similar to acute myeloid leukemia (AML-M6). The disease phenotype is readily transplantable into secondary recipients. This is consistent with ex vivo clonogenicity assays, where p210 BCR/ABL preferentially supports the growth of colony forming unit (CFU)-granulocyte-macrophage (GM), whereas p190 BCR/ABL and the mutant preferentially support the growth of burst forming unit-erythroid (BFU-E). These results suggest that the GEF activity that distinguishes p210 BCR/ABL from p190 BCR/ABL actively regulates disease progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931524 | PMC |
http://dx.doi.org/10.1038/leu.2012.351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!