In the measurement of a twisted nematic liquid crystal device (TNLCD) by an optical apparatus, the cell parameters of the TNLCD may result in multiple solutions in the measurement that all agree with the measured data; hence manufacturers cannot find a set of correct solutions from among the ambiguous ones. With the help of the optical equivalence theorem of a unitary optical system, the ambiguity of the measured parameters of a TNLCD, including cell parameters and equivalent birefringent parameters, can be simultaneously removed by an analytical approach using a single-wavelength polarimeter. The procedure for unique determination of the cell parameters is performed using a self-consistent condition to select a set of the correct solutions from all the possible solutions. The proposed method can be applied to characterize a generally TNLCD for which the twisted angle is close to 270° and the liquid crystal phase retardation is over 2π.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.51.007910DOI Listing

Publication Analysis

Top Keywords

cell parameters
16
liquid crystal
12
analytical approach
8
unique determination
8
determination cell
8
parameters equivalent
8
equivalent birefringent
8
birefringent parameters
8
twisted nematic
8
nematic liquid
8

Similar Publications

Introduction: Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3.

View Article and Find Full Text PDF

Purpose: To describe the safety and assess the feasibility of using intracameral cefuroxime sodium (Aprokam®) during congenital cataract surgery as a preventive measure for endophthalmitis.

Design: Monocentric, prospective, observational pilot study.

Setting: San Giuseppe Hospital, University of Milan, Milan, Italy.

View Article and Find Full Text PDF

One of the key parameters that affects efficiency, power density and performance of a supercapacitor (SC) is the equivalent series resistance (ESR). In this study we propose a method to estimate ESR from the charging kinetics which has practical applications. Therefore, to study the ESR of the SC we must look at the different factors that affect this resistance.

View Article and Find Full Text PDF

Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing.

Small

January 2025

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.

View Article and Find Full Text PDF

Background: Platelet activation plays a central role in the pathogenesis of acute coronary syndrome (ACS). Platelet morphological parameters, including MPV, PDW, and P-LCR, are emerging as biomarkers for predicting the severity of ACS and prognosis.

Aims: This study aims to assess the relationship between these parameters and coronary severity and to evaluate their predicting adverse outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!