This study investigated the effect of a coating material containing S-PRG fillers on the demineralization of bovine enamel and dentin, by measuring changes in the transmitted ultrasonic velocity. Bovine enamel and dentin specimens with and without coating (n=6 for each condition) were cut into blocks, immersed in 0.1 M lactic-acid buffer solution (pH 4.75) for 10 min twice daily throughout the test period, and stored in a demineralising artificial saliva solution (pH 7.0) between treatments. The propagation time of longitudinal ultrasonic waves was measured by a pulser-receiver with a transducer. Data were evaluated using ANOVA followed by Tukey's HSD test (α=0.05). The sonic velocity decreased over time for specimens stored in demineralising solution; however, coated specimens had a significantly higher sonic velocity than those without coating. The coating material containing pre-reacted glass-ionomer fillers therefore appeared to reduce the demineralisation of enamel and dentin.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.2012-153DOI Listing

Publication Analysis

Top Keywords

coating material
12
enamel dentin
12
bovine enamel
8
stored demineralising
8
sonic velocity
8
coating
5
ultrasonic investigation
4
investigation s-prg
4
s-prg filler-containing
4
filler-containing coating
4

Similar Publications

An Ultrastable Integrated Anode with ∼95 wt.% SiO via In Situ Electrode-Scale Conformal Coating.

ACS Nano

January 2025

Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

SiO-based anodes, considered the most promising candidate for high-energy density batteries, have long been bothered by mechanical integrity issues. Research efforts focus on particle modifications, often overlooking the enhancement of interparticle connections, which can reduce the active material content within the electrode. Herein, an integrated electrode with strong covalent bonding at the electrode scale is designed, achieving excellent mechanical stability with ∼95 wt.

View Article and Find Full Text PDF

Subnano AlO Coatings for Kinetics and Stability Optimization of LiNiCoMnO via O-Based Atomic Layer Deposition.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.

The Ni-rich LiNiCoMnO cathode (NCM, ≥ 0.6) suffers rapid capacity decay due to serious surface degradations from the corrosion of the electrolyte. The processes of the HO- and O-based AlO atomic layer deposition (ALD) on the single-crystal LiNiCoMnO (NCM83) are investigated by measurements to understand the mechanism of their different impacts on the electrochemical performance of NCM83.

View Article and Find Full Text PDF

Experimental and Computational Synthesis of TiO Sol-Gel Coatings.

Langmuir

January 2025

Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.

During the experimental formation of sol-gel coatings, the colloid dispersions go through a drying process, and the structure of the coatings is formed as a result of complex chemical, colloidal, and capillary interactions. While computer simulations provide guidelines to tune and even design the nanomaterials synthesis, simulations of coating structure formation are hitherto unknown in the literature. Based on real experiments, we establish here a ReaxFF reactive force field-based molecular dynamics simulation protocol in order to investigate and determine the role of the experimental conditions on the pore structure formation in the coatings.

View Article and Find Full Text PDF

Tunable mechanical properties of PDMS-TMPTMA microcapsules for controlled release in coatings.

Soft Matter

January 2025

School of Materials Engineering, Purdue University, 701 West Stadium Ave, West Lafayette, IN 47907, USA.

Within coating formulations, microcapsules serve as vehicles for delivering compounds like catalysts and self-healing agents. Designing microcapsules with precise mechanical characteristics is crucial to ensure their contents' timely release and minimize residual shell fragments, thereby avoiding adverse impacts on the coating quality. With these constraints in mind, we explored the use of 1 cSt PDMS oil as a diluent (porogen) in trimethylolpropane trimethacrylate (TMPTMA)-based to fabricate microcapsules with customized mechanical properties and submicrometer debris size after shell breakup that can encapsulate a wide range of compounds.

View Article and Find Full Text PDF

This paper presents a multiscale computational model, 'micro-to-meso-to-macro', to simulate polydopamine coated gold nanoparticles (AuNP@PDA) for assisted tumor photothermal therapy (PTT). The optical properties, mainly refractive index, of the PDA unit molecules are calculated using the density functional theory (DFT) method in this multiscale model. Subsequently, the thermodynamic properties, including thermal conductivity and heat capacity, of the PDA cells and AuNP@PDA particles are calculated using molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!