A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tumor apoptosis in prostate cancer by PGD(2) and its metabolite 15d-PGJ(2) in murine model. | LitMetric

AI Article Synopsis

  • 15d-PGJ(2) is a metabolite of prostaglandin D(2) and shows anti-tumor effects, but the mechanisms behind its action in living organisms remain unclear.
  • This study explored the effects of 15d-PGJ(2) and PGD(2) on murine prostate cancer cells in both lab and animal models, specifically focusing on a modified RM9 cancer cell line that had the mPGDS gene inserted.
  • Findings indicate that the mPGDS-modified cells induced tumor cell death (apoptosis) in mice but did not show the same effect in lab conditions, suggesting that certain tumor environments might enhance the therapeutic potential of this gene.

Article Abstract

Fifteen-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) is one of non-enzymatically converted metabolite from prostaglandin D(2) (PGD(2)). Anti-tumor effects of 15d-PGJ(2) in various tumors are partially known, but the detail of in vivo mechanisms of action is still unclear. In this study, we investigated the effects of 15d-PGJ(2) and PGD(2) on murine prostate cancer in vitro and in vivo. Murine prostate cancer cells RM9 were transfected with murine prostaglandin D(2) synthase (mPGDS) gene by using defective retrovirus vector, designated as RM9-mPGDS. In addition, RM9 was also transfected with only defective retrovirus vector, designated as RM9-EV and used as control in this study. The expression and production of the gene were confirmed by RT-PCR and ELISA, respectively. For in vivo study, RM9-mPGDS was injected into the back of C57BL/6 mice, then resulted tumor was used for pathological analysis 14days after the inoculation. Tumor cell apoptosis in the tissue was detected by TUNEL staining. Retrovirally transfected mPGDS in RM9 significantly induced apoptosis in vivo but not in vitro, by TUNEL staining and cell death ELISA, respectively. Our results strongly suggested that the apoptosis induced in RM9-mPGDS in vivo was probably achieved in tumor environment such as hypoxic condition. The introduction of PGDS gene into cancer cells might be a novel therapy against cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2012.10.012DOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
effects 15d-pgj2
8
murine prostate
8
cancer cells
8
rm9 transfected
8
defective retrovirus
8
retrovirus vector
8
vector designated
8
tunel staining
8
cancer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!