In vitro regulation of mammary glucose-6-phosphate dehydrogenase activity by palmitoyl coenzyme A, acetate, and polyamines.

Proc Soc Exp Biol Med

Department of Animal Science, College of Veterinary Medicine, Oregon State University, Corvallis 97331.

Published: April 1990

An in vitro study was conducted to determine whether bovine mammary glucose-6-phosphate dehydrogenase (G6PD) activity was regulated by palmitoyl coenzyme A (CoA), acetate, spermidine, and putrescine and whether these effects were dependent upon stage of lactation. Early lactation explants incubated in media containing palmitoyl CoA or acetate had reduced (P less than 0.01) G6PD activity compared with incubated control explants. G6PD activity in early lactation explants was reduced (P less than 0.05) when incubated with 5 microM palmitoyl CoA or 1 mM acetate compared with 25 microM palmitoyl CoA or 10 mM acetate. Spermidine (0.4 mM) reversed (P less than 0.05) palmitoyl CoA-induced inhibition of early lactation G6PD activity at 5 microM, but not at 25 microM palmitoyl CoA. G6PD activity in early lactation explants was decreased (P less than 0.05) when treated with putrescine (0.4 mM) compared with explants treated with spermidine. Addition of acetate in combination with 5 microM palmitoyl CoA reversed G6PD inhibition (P less than 0.05 for 1 mM and P less than 0.01 for 10 mM) while addition of either level of acetate in combination with 25 microM palmitoyl CoA failed to reverse G6PD inhibition. G6PD activity was higher (P less than 0.01) in early lactation than mid-lactation explants. No statistical differences (P greater than 0.1) were found among any treatments in explants from mid-lactation cows. We conclude that palmitoyl CoA and acetate will inhibit G6PD activity in early lactation, but not mid-lactation explants; addition of spermidine will reverse this inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.3181/00379727-193-43035DOI Listing

Publication Analysis

Top Keywords

g6pd activity
28
palmitoyl coa
28
early lactation
24
coa acetate
20
microm palmitoyl
20
lactation explants
12
activity early
12
palmitoyl
10
g6pd
9
mammary glucose-6-phosphate
8

Similar Publications

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Cytoplasmic G6PDs modulate callus formation in Arabidopsis root explants through regulation of very-long-chain fatty acids accumulation.

Plant Physiol Biochem

January 2025

Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China. Electronic address:

Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, impacts cancer cell proliferation and plant stress responses. However, its role in plant cell dedifferentiation and callus formation is not well understood. This study explores the function of cytoplasmic G6PD isoforms in Arabidopsis pericycle cell reprogramming into callus by employing a suite of mutant analyses, qRT-PCR, and GC-MS.

View Article and Find Full Text PDF

Recurrent IDH mutations catalyze NADPH-dependent production of oncometabolite R-2HG for tumorigenesis. IDH inhibition provides clinical response in a subset of acute myeloid leukemia (AML) cases; however, most patients develop resistance, highlighting the need for more effective IDH-targeting therapies. By comparing transcriptomic alterations in isogenic leukemia cells harboring CRISPR base-edited IDH mutations, we identify the activation of adhesion molecules including CD44, a transmembrane glycoprotein, as a shared feature of IDH-mutant leukemia, consistent with elevated CD44 expression in IDH-mutant AML patients.

View Article and Find Full Text PDF

The oxidative pentose phosphate pathway (OPPP) plays an important role for the generation of reducing power in all eukaryotes. In plant cells the OPPP operates in several cellular compartments, but as full cycle only in the plastid stroma where it is essential. As suggested by our recent results, OPPP reactions are also mandatory inside peroxisomes, at least during fertilisation.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme in the pentose phosphate pathway (PPP), a critical glucose metabolism pathway linked to cancer cell proliferation and metastasis. Inhibiting the PPP presents a promising approach to cancer treatment. The G6PD enzyme structure was obtained from the Protein Data Bank (PDB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!