Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.12032 | DOI Listing |
Life Sci Space Res (Amst)
February 2025
Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown C. elegans, we integrated transcriptomic data from C.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Infection Biology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.
View Article and Find Full Text PDFLife (Basel)
January 2025
State Key Laboratory Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China.
is used as an experimental animal model for the study of three-host ticks due to its special life cycle and easy maintenance in the laboratory and in its reproduction. The life cycle of goes through a tightly regulated life cycle to adapt to the changing host and environment, and these stages of transition are also accompanied by proteome changes in the body. Here, we used the isobaric tags for a relative and absolute quantification (iTRAQ) technique to systematically describe and analyze the dynamic expression of the protein and the molecular basis of the proteome of in seven differential developmental stages (eggs, unfed larvae, engorged larvae, unfed nymphs, engorged nymphs unfed adults, and engorged adults).
View Article and Find Full Text PDFBMC Vet Res
January 2025
Materials Synthesis Laboratory, Carbon Tech Industrial Group, Carbon Tech, Tehran, Iran.
Background: Strongyle nematodes pose a major challenge in veterinary parasitology, causing significant economic losses in livestock due to resistance to conventional treatments. Current anthelmintics, like Ivermectin, often encounter resistance issues. This study aims to address these gaps by synthesizing Carbon Quantum Dots (CQDs) and Copper-Doped CQDs (Cu@CQDs) using glucose extract, and evaluating their nematicidal properties against strongyles in vitro.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Ophthalmology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, P. R. China.
The activation of the human interferon-inducible protein X (IFIX) isoform is associated with maintaining a stable cytoskeleton and inhibiting epithelial-mesenchymal transition (EMT). However, the mechanisms and pathways underlying IFIX-mediated oncogenesis are not well understood. In this study, we investigated the effects of IFIX overexpression and knockdown in CAL-27 and SCC-25 oral squamous cell carcinoma (OSCC) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!