Mixed metal sulfides containing combinations of W, Fe, Mo, Ni, and Ru were synthesized and screened for activity and stability for the hydrogen evolution reaction (HER) in aqueous hydrobromic acid (HBr). Co- and Ni-substituted RuS(2) were identified as potentially active HER electrocatalysts by high-throughput screening (HTS), and the specific compositions Co(0.4)Ru(0.6)S(2) and Ni(0.6)Ru(0.4)S(2) were identified by optimization. Hydrogen evolution activity of Co(0.4)Ru(0.6)S(2) in HBr is greater than RuS(2) or CoS(2) and comparable to Pt and commercial Rh(x)S(y). Structural and morphological characterizations of the Co-substituted RuS(2) suggest that the nanoparticulate solids are a homogeneous solid solution with a pyrite crystal structure. No phase separation is detected for Co substitutions below 30% by X-ray diffraction. In 0.5 M HBr electrolyte, the Co-Ru electrode material synthesized with 30% Co rapidly lost approximately 34% of the initial loading of Co; thereafter, it was observed to exhibit stable activity for HER with no further loss of Co. Density functional theory calculations indicate that the S(2)(2-) sites are the most important for HER and the presence of Co influences the S(2)(2-) sites such that the hydrogen binding energy at sufficiently high hydrogen coverage is decreased compared to ruthenium sulfide. Although showing high HER activity in a flow cell, the reverse reaction of hydrogen oxidation is slow on the RuS(2) catalysts tested when compared to platinum and rhodium sulfide, leaving rhodium sulfide as the only suitable tested material for a regenerative HBr cell due its stability compared to platinum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la3032489 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of Future Technology, Southwest Jiaotong University, Chengdu 610031, China.
Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.
View Article and Find Full Text PDFACS Energy Lett
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
Light-driven reduction of CO into chemicals using a photoelectrochemical (PEC) approach is considered as a promising way to meet the carbon neutral target. The very top surface of the photoelectrode and semiconductor/electrolyte interface plays a pivotal role in defining the performance for PEC CO reduction. However, such impact remains poorly understood.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Optoelectronic Information of Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Reasonable design of hydrogen evolution reaction (HER) electrocatalysts with low Pt loading and excellent catalytic performance is a key challenge in finding efficient and cost attractive catalysts. Pt with its unique d-electrons provides new opportunities for the development of HER catalysts when it forms compounds with highly earth-abundant C. Herein, we focused on designing highly efficient catalysts composed of Pt and C elements using first-principles structure search simulations, identifying four stability PtC monolayers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, Department of Chemistry, Weijin road, 300071, Tianjin, CHINA.
Localized surface plasmon resonance (LSPR) metals exhibit remarkable light-absorbing property and unique catalytic activity, attracting significant attention in photocatalysts recently. However, the practical application of plasmonic nanometal is hindered by challenge of energetic electrons extraction and low selectivity. The energetic carriers generated in nanometal under illumination have extremely short lifetimes, leading to rapid energy loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!