Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection.

ACS Nano

The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

Published: January 2013

Both disease diagnosis and therapeutic treatments require real-time information from assays capable of identifying multiple targets. Among various multiplexed biochips, multiplexed suspension assays of quantum dot (QD)-encoded microspheres are highly advantageous. This arises from the excellent fluorescent properties of the QDs incorporated into these microspheres, thus allowing them to serve as "QD barcodes". QD barcodes can be prepared through various approaches. However, the formulation of improved synthetic techniques that may allow more efficient preparation of QD barcodes with better encoding accuracy still remains a challenge. In this report, we describe a combined membrane emulsification-solvent evaporation (MESE) approach for the efficient preparation of QD barcodes. By combining the advantages of the MESE approach in controlling the barcode sizes with accurate encoding, a three-dimensional barcode library that integrates the signals of the forward scattering, fluorescence 1, and fluorescence 4 channels was established via flow cytometry. The five indexes of hepatitis B viruses were chosen as diagnostic targets to examine the feasibility of the QD barcodes in high-throughput diagnosis. On the basis of showing that singleplex detection is feasible, we demonstrate the ability of these QD barcodes to simultaneously and selectively detect a multitude of diverse biomolecular targets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn3045215DOI Listing

Publication Analysis

Top Keywords

efficient preparation
12
quantum dot
8
preparation barcodes
8
mese approach
8
barcodes
6
highly efficient
4
preparation multiscaled
4
multiscaled quantum
4
dot barcodes
4
barcodes multiplexed
4

Similar Publications

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Atomically Dispersed FeMo Dual Sites for Enhanced Electrocatalytic Nitrogen Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.

View Article and Find Full Text PDF

Palladium Nanosheet Enables Synergistic Electrocatalytic Dehalogenation via Direct and Indirect Electron Transfer Mechanisms.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.

Electrocatalytic dehalogenation is a promising method for the remediation of chlorinated organic pollutants. The dehalogenation performance is controlled by catalytic activity, and the underlying electrocatalytic dehalogenation mechanisms need to be carefully investigated for guiding the design of catalyst. Here we report the preparation of a new Pd-based catalyst with a nanosheet structure (Pd NS) by a simple wet-chemical reduction method.

View Article and Find Full Text PDF

The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!