Many insect groups have coevolved with bacterial endosymbionts that live within specialized host cells. As a salient example, ants in the tribe Camponotini rely on Blochmannia, an intracellular bacterial mutualist that synthesizes amino acids and recycles nitrogen for the host. We performed a shotgun, label-free, LC/MS/MS quantitative proteomic analysis to investigate the proteome of Blochmannia associated with Camponotus chromaiodes. We identified more than 330 Blochmannia proteins, or 54% coverage of the predicted proteome, as well as 244 Camponotus proteins. Using the average intensity of the top 3 "best flier" peptides along with spiking of a surrogate standard at a known concentration, we estimated the concentration (fmol/μg) of those proteins with confident identification. The estimated dynamic range of Blochmannia protein abundance spanned 3 orders of magnitude and covered diverse functional categories, with particularly high representation of metabolism, information transfer, and chaperones. GroEL, the most abundant protein, totaled 6% of Blochmannia protein abundance. Biosynthesis of essential amino acids, fatty acids, and nucleotides, and sulfate assimilation had disproportionately high coverage in the proteome, further supporting a nutritional role of the symbiosis. This first quantitative proteomic analysis of an ant endosymbiont illustrates a promising approach to study the functional basis of intimate symbioses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599776PMC
http://dx.doi.org/10.1021/pr3007842DOI Listing

Publication Analysis

Top Keywords

proteomic analysis
12
amino acids
8
quantitative proteomic
8
blochmannia protein
8
protein abundance
8
blochmannia
6
analysis unculturable
4
unculturable bacterial
4
bacterial endosymbiont
4
endosymbiont blochmannia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!