Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms.

Sci Rep

Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 Japan.

Published: May 2013

Ganoderma fungus (Ganodermataceae) is a multifunctional medicinal mushroom and has been traditionally used for the treatment of various types of disease. Ganoderic acid DM (1) is a representative triterpenoid isolated from G. lingzhi and exhibits various biological activities. However, a universal starting point that triggers multiple signaling pathways and results in multifunctionality of 1 is unknown. Here we demonstrate the important clues regarding the mechanisms underlying multi-medicinal action of 1. We examined structure-activity relationships between 1 and its analogs and found that the carbonyl group at C-3 was essential for cytotoxicity. Subsequently, we used 1-conjugated magnetic beads as a probe and identified tubulin as a specific 1-binding protein. Furthermore, 1 showed a similar Kd to that of vinblastine and also affected assembly of tubulin polymers. This study revealed multiple biological activities of 1 and may contribute to the design and development of new tubulin-inhibiting agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510465PMC
http://dx.doi.org/10.1038/srep00905DOI Listing

Publication Analysis

Top Keywords

ganoderic acid
8
biological activities
8
target proteins
4
proteins ganoderic
4
acid clues
4
clues pharmacological
4
pharmacological mechanisms
4
mechanisms ganoderma
4
ganoderma fungus
4
fungus ganodermataceae
4

Similar Publications

Infectious diseases caused by bacteria are life-threating and are among the major causes of death in the world. Antibiotics have offered humans a new approach to infection control. Antibiotics are reckoned as the "magic bullets" for the fight against bacterial infections, therefore increasing life expectancy and decreasing mortality and morbidity.

View Article and Find Full Text PDF

Study of the Anti-MYC Potential of Lanostane-Type Triterpenes.

ACS Omega

December 2024

Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil.

One of the most investigated molecular targets for anticancer therapy is the proto-oncogene , which is amplified and thus overexpressed in many types of cancer. Due to its structural characteristics, developing inhibitors for the target has proven to be challenging. In this study, the anti-MYC potential of lanostane-type triterpenes was investigated for the first time, using computational approaches that involved ensemble docking, prediction of structural properties and pharmacokinetic parameters, molecular dynamics (MD), and binding energy calculation using the molecular mechanics-generalized born surface area (MM-GBSA) method.

View Article and Find Full Text PDF

Background: Bleomycin (BLM), an anticancer medication, can exacerbate pulmonary fibrosis by inducing oxidative stress and inflammation. Anti-inflammatory, anti-fibrotic, and antioxidant properties are exhibited by ganoderic acid A (GAA).

Aim: So, we aim to assess GAA's protective impact on lung fibrosis induced via BLM.

View Article and Find Full Text PDF

[UPLC-Q-TOF-MS/MS qualitative analysis and HPLC determination of triterpenoids in Ganoderma lucidum spores].

Zhongguo Zhong Yao Za Zhi

October 2024

National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.

Ganoderma spores are the dry and mature spores of G. lucidum or G. sinense of Polyporaceae, with strong immunity-improving, anti-tumor, and anti-oxidant activities.

View Article and Find Full Text PDF

MDM2 up-regulates the energy metabolism in NSCLC in a p53-independent manner.

Biochem Biophys Res Commun

January 2025

Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia. Electronic address:

Although an E3 ligase MDM2 is the major negative regulator of the p53 tumor suppressor, a growing body of evidence suggests its p53-independent oncogenic properties. In particular, MDM2 has been shown to regulate serine metabolism independently of p53 status in several types of neoplasia, including NSCLC. Using the GSEA approach and publicly available molecular data on NSCLC tumors, our bioinformatics data suggest that MDM2 affects a number of metabolic genes, particularly those encoding components of the electron transport chain (ETC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!