Fine particulate matter (PM(2.5)) is majorly formed by precursor gases, such as sulfur dioxide (SO(2)) and nitrogen oxides (NO(x)), which are emitted largely from intense industrial operations and transportation activities. PM(2.5) has been shown to affect respiratory health in humans. Evaluation of source regions and assessment of emission source contributions in the Gulf Coast region of the USA will be useful for the development of PM(2.5) regulatory and mitigation strategies. In the present study, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model driven by the Weather Research & Forecasting (WRF) model is used to identify the emission source locations and transportation trends. Meteorological observations as well as PM(2.5) sulfate and nitric acid concentrations were collected at two sites during the Mississippi Coastal Atmospheric Dispersion Study, a summer 2009 field experiment along the Mississippi Gulf Coast. Meteorological fields during the campaign were simulated using WRF with three nested domains of 36, 12, and 4 km horizontal resolutions and 43 vertical levels and validated with North American Mesoscale Analysis. The HYSPLIT model was integrated with meteorological fields derived from the WRF model to identify the source locations using backward trajectory analysis. The backward trajectories for a 24-h period were plotted at 1-h intervals starting from two observation locations to identify probable sources. The back trajectories distinctly indicated the sources to be in the direction between south and west, thus to have origin from local Mississippi, neighboring Louisiana state, and Gulf of Mexico. Out of the eight power plants located within the radius of 300 km of the two monitoring sites examined as sources, only Watson, Cajun, and Morrow power plants fall in the path of the derived back trajectories. Forward dispersions patterns computed using HYSPLIT were plotted from each of these source locations using the hourly mean emission concentrations as computed from past annual emission strength data to assess extent of their contribution. An assessment of the relative contributions from the eight sources reveal that only Cajun and Morrow power plants contribute to the observations at the Wiggins Airport to a certain extent while none of the eight power plants contribute to the observations at Harrison Central High School. As these observations represent a moderate event with daily average values of 5-8 μg m(-3) for sulfate and 1-3 μg m(-3) for HNO(3) with differences between the two spatially varied sites, the local sources may also be significant contributors for the observed values of PM(2.5).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505538 | PMC |
http://dx.doi.org/10.1007/s11869-010-0132-1 | DOI Listing |
Sci Rep
January 2025
Shanxi Provincial Geological Prospecting Bureau, Taiyuan, 030001, China.
In China, a significant amount of coal fly ash is stored or used for landfill reclamation. The contaminants in coal fly ash (CFA) leachate can cause regional soil and groundwater contamination during long-term storage. This paper focuses on a coal gangue comprehensive utilisation power plant in Fenyang City, Shanxi Province, China, where the leaching characteristics of CFA were investigated by leaching tests.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Today, the applications of natural polysaccharide-based nanofibers are growing in drug delivery and food industries. They also showed their capability as packaging due to biodegradability, mechanical strength, barrier properties, thermal stability, antioxidant, and antimicrobial features. Natural polysaccharides come from different sources, such as plants, microbes, and animals.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Industrial and Materials Science, Division of Product Development, Chalmers University of Technology SE-412 96 Gothenburg, Sweden. Electronic address:
Waste-to-Energy (WtE) generates circa 1 Mt/y of Mineral fraction of Incineration Bottom Ash (MIBA) in Sweden, often used as construction material for landfills. Upcoming European Commission directives will limit landfilling and the demand for MIBA for landfill construction is predicted to decrease. Therefore, alternative utilisations of MIBA are required.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Physics, College of Science, De La Salle University, Philippines.
Exposure to mid-energy radiation poses significant health risks, necessitating the development of effective shielding materials. Traditional lead-based shields, while effective, have significant drawbacks including toxicity and environmental concerns. This study investigates the potential of lead-free epoxy resin nanocomposites, incorporating bismuth oxide, nickel oxide, and cerium oxide, for mid-energy radiation protection.
View Article and Find Full Text PDFNat Commun
January 2025
Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
Knowledge about how and where proteins interact provides a pillar for cell biology. Protein proximity-labeling has emerged as an important tool to detect protein interactions. Biotin-related proximity labeling approaches are by far the most commonly used but may have labeling-related drawbacks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!