Occurrence of epilepsy at different zeitgeber times alters sleep homeostasis differently in rats.

Sleep

Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.

Published: December 2012

Study Objectives: Controversial sleep disruptions (e.g., poor nighttime sleep and daytime somnolence) are common in epilepsy patients. Sleep is known to be regulated by homeostatic factors, which mediate sleep propensity, and the circadian oscillator, a clocklike mechanism. However, it is unknown how epileptic episodes that occur at different zeitgeber times (ZTs) alter sleep regulation. This study was designed to elucidate the sleep disruptions associated with epilepsy and their underlying mechanisms by delivering kindled epilepsy at different ZTs: ZT0, ZT6, and ZT13.

Design: Kindled epilepsy was induced at 3 different ZTs, and sleep-wake activities were analyzed before and after full-blown seizure. Ribonuclease protection assay, radioimmunoassay, and immunohistochemistry were respectively employed to determine the levels of interleukin-1 mRNA, corticosterone, and PER1 protein.

Setting: The experiments were performed at Neurophysiology Laboratory at National Taiwan University. PARTICIPANT AND INTERVENTIONS: Male Sprague-Dawley rats were implanted with electroencephalograph (EEG) electrodes, a bipolar stimulating electrode, and a guide cannula. Kindling stimuli were delivered via a bipolar electrode placed in the right central nucleus of the amygdala.

Measurement And Results: Kindled epilepsy occurring at ZT0 and ZT13 predominantly affected homeostatic factors, whereas ZT6-kindling stimuli altered the circadian oscillator. ZT0-kindling decreased rapid eye movement (REM) and non-REM (NREM) sleep, which was mediated by corticotrophin-releasing hormone, but did not alter the rhythm of sleep-wake fluctuation. On the other hand, ZT13-kindling enhanced interleukin-1 and consequently increased NREM sleep without altering the sleep-wake fluctuation. Nevertheless, the expression of PER1 protein in suprachiasmatic nucleus of the hypothalamus and the circadian rhythm of sleep fluctuation were respectively advanced 6 h and 2 h when kindling stimulation was delivered at ZT6. Shifts of sleep circadian rhythm and PER1 oscillation induced by ZT6-kindling were blocked by administration of hypocretin receptor antagonist SB334867 into the SCN, indicating the involvement of hypocretin.

Conclusion: These observations suggest that the occurrence of epilepsy at different ZTs alters sleep processes differently.

Citation: Yi PL; Chen YJ; Lin CT; Chang FC. Occurrence of epilepsy at different zeitgeber times alters sleep homeostasis differently in rats. SLEEP 2012;35(12):1651-1665.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490358PMC
http://dx.doi.org/10.5665/sleep.2238DOI Listing

Publication Analysis

Top Keywords

sleep
14
occurrence epilepsy
12
zeitgeber times
12
alters sleep
12
kindled epilepsy
12
epilepsy zeitgeber
8
times alters
8
sleep homeostasis
8
homeostasis differently
8
differently rats
8

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.

View Article and Find Full Text PDF

Unlabelled: Klinefelter syndrome (KS) is the most common sex chromosomal aneuploidy in males (47,XXY karyotype in 80-90% of cases), primarily characterized by hypergonadotropic hypogonadism and infertility. It encompasses a broad phenotypic spectrum, leading to variability in neurocognitive and psychosocial outcomes among affected individuals. Despite the recognized correlation between KS and various neuropsychiatric conditions, studies investigating potential sleep disorders, particularly in pediatric subjects, are lacking.

View Article and Find Full Text PDF

The aim of this study is to investigate the impact of using probiotics with strains related to dopamine and gamma-aminobutyric acid production on clinical features of autism spectrum disorder (ASD) and/or attention deficit/hyperactivity disorder (ADHD). This randomized, controlled trial involved 38 children with ADHD and 42 children with ASD, aged 5-16 years, who received probiotics (Lactiplantibacillus plantarum and Levilactobacillus brevis 109/cfu/daily) or placebo for 12 weeks. Parent-reported symptoms were assessed using Conners' 3rd-Ed and the Social Responsiveness Scale Test, 2nd-Ed (SRS-2), and children completed the Conners Continuous Performance Test, 3rd-Ed (CPT 3) or Conners Kiddie CPT, 2nd-Ed (K-CPT 2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!