At the core of the bacterial general secretion (Sec) pathway is the SecA ATPase, which powers translocation of unfolded preproteins containing Sec signal sequences through the SecYEG membrane channel. Mycobacteria have two nonredundant SecA homologs: SecA1 and SecA2. While the essential SecA1 handles "housekeeping" export, the nonessential SecA2 exports a subset of proteins and is required for Mycobacterium tuberculosis virulence. Currently, it is not understood how SecA2 contributes to Sec export in mycobacteria. In this study, we focused on identifying the features of two SecA2 substrates that target them to SecA2 for export, the Ms1704 and Ms1712 lipoproteins of the model organism Mycobacterium smegmatis. We found that the mature domains of Ms1704 and Ms1712, not the N-terminal signal sequences, confer SecA2-dependent export. We also demonstrated that the lipid modification and the extreme N terminus of the mature protein do not impart the requirement for SecA2 in export. We further showed that the Ms1704 mature domain can be efficiently exported by the twin-arginine translocation (Tat) pathway. Because the Tat system exports only folded proteins, this result implies that SecA2 substrates can fold in the cytoplasm and suggests a putative role of SecA2 in enabling export of such proteins. Thus, the mycobacterial SecA2 system may represent another way that bacteria solve the problem of exporting proteins that can fold in the cytoplasm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562099 | PMC |
http://dx.doi.org/10.1128/JB.02032-12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!