Some allergens with relevant protease activity have the potential to directly interact with host structures. It remains to be elucidated whether this activity is relevant for developing their allergenic properties. The major goal of this study was to elucidate whether allergens with a strong protease activity directly interact with modules of the innate immune system, thereby inducing an immune response. We chose Drosophila melanogaster for our experiments to prevent the results from being influenced by the adaptive immune system and used the armamentarium of methods available for the fly to study the underlying mechanisms. We show that Dermatophagoides pteronyssinus major allergen 1 (Der p 1), the major allergen of the house dust mite, efficiently activates various facets of the Drosophila innate-immune system, including both epithelial and systemic responses. These responses depend on the immune deficiency (IMD) pathway via activation of the NF-κB transcription factor Relish. In addition, the major pathogen associated molecular pattern recognizing receptor of the IMD pathway, peptidoglycan recognition protein-LC, was necessary for this response. We showed that Der p 1, which has cysteine protease activity, cleaves the ectodomain of peptidoglycan recognition protein-LC and, thus, activates the IMD pathway to induce a profound immune response. We conclude that the innate immune response to this allergen-mediated proteolytic cleavage represents an ancient type of danger signaling that may be highly relevant for the primary allergenicity of compounds such as Der p 1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1201347 | DOI Listing |
Noise Health
January 2025
Department of Geriatric Health Internal Medicine, Qingdao Municipal Hospital, Qingdao 266000, China.
Objective: Evaluate the effect of white noise intervention on sleep quality and immunological indicators of patients with breast cancer undergoing neoadjuvant chemotherapy (NAC).
Methods: From January 2020 to December 2022, 104 newly diagnosed female patients (the number of people who met the inclusion criteria) with breast cancer who were confirmed to be preoperative NAC by puncture pathology were selected for a randomised single-blind trial. The patients were randomly divided into an observation group and a control group, with 52 cases in each group.
Br J Dermatol
January 2025
Division of Infection & Immunity, Cardiff University, Cardiff, UK.
Am J Physiol Endocrinol Metab
January 2025
National Agri-Food and Biomanufacturing Institute (BRIC-NABI), Food & Nutrition Biotechnology Division, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India.
Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the CNS. Emerging evidence indicates that neurons also orchestrate the microglia mediated immune response through neuro-immune crosstalk perhaps through metabolic signalling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains.
View Article and Find Full Text PDFScience
January 2025
NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
University of Padua, Padua, PD, Italy.
T cell-based therapies, including Tumor Infiltrating Lymphocyte Therapy (TIL), T cell receptor engineered T cells (TCR T), and Chimeric Antigen Receptor T cells (CAR T), are powerful therapeutic approaches for cancer treatment. While these therapies are primarily known for their direct cytotoxic effects on cancer cells, accumulating evidence indicates that they also influence the tumor microenvironment (TME), by altering the cytokine milieu and recruiting additional effector populations to help orchestrate the antitumor immune response. Conversely, the TME itself can modulate the behaviour of these therapies within the host by either supporting or inhibiting their activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!