We present the Database of Disordered Protein Prediction (D(2)P(2)), available at http://d2p2.pro (including website source code). A battery of disorder predictors and their variants, VL-XT, VSL2b, PrDOS, PV2, Espritz and IUPred, were run on all protein sequences from 1765 complete proteomes (to be updated as more genomes are completed). Integrated with these results are all of the predicted (mostly structured) SCOP domains using the SUPERFAMILY predictor. These disorder/structure annotations together enable comparison of the disorder predictors with each other and examination of the overlap between disordered predictions and SCOP domains on a large scale. D(2)P(2) will increase our understanding of the interplay between disorder and structure, the genomic distribution of disorder, and its evolutionary history. The parsed data are made available in a unified format for download as flat files or SQL tables either by genome, by predictor, or for the complete set. An interactive website provides a graphical view of each protein annotated with the SCOP domains and disordered regions from all predictors overlaid (or shown as a consensus). There are statistics and tools for browsing and comparing genomes and their disorder within the context of their position on the tree of life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531159PMC
http://dx.doi.org/10.1093/nar/gks1226DOI Listing

Publication Analysis

Top Keywords

scop domains
12
database disordered
8
disordered protein
8
disorder predictors
8
disorder
5
d²p² database
4
disordered
4
protein
4
protein predictions
4
predictions database
4

Similar Publications

Purpose: Our previous study indicated that exosomes derived from mouse adipose-derived mesenchymal stem cells (mADSC-Exos) alleviated the benzalkonium chloride (BAC)-induced mouse dry eye model. However, the specific active molecules in mADSC-Exos that contribute to anti-dry eye therapy remain unidentified. In this study, we aimed to investigate the efficacy and mechanisms of miR-223-3p derived from mADSC-Exos in dry eye models.

View Article and Find Full Text PDF

In addition to the growth of protein structures generated through wet laboratory experiments and deposited in the PDB repository, AlphaFold predictions have significantly contributed to the creation of a much larger database of protein structures. Annotating such a vast number of structures has become an increasingly challenging task. CATH is widely recognized as one the most common platforms for addressing this challenge, as it classifies proteins based on their structural and evolutionary relationships, offering the scientific community an invaluable resource for uncovering various properties, including functional annotations.

View Article and Find Full Text PDF

Bioinformatics approach for prediction and analysis of the Non-Structural Protein 4B (NSP4B) of the Zika virus.

J Genet Eng Biotechnol

March 2024

Physics Department, Medical Biophysics Division, Faculty of Science, Helwan University, Cairo, Egypt.

Background: The Nonstructural Protein (NSP) 4B of Zika virus of 251 amino acids from (ZIKV/Human/POLG_ZIKVF) with accession number (A0A024B7W1), Induces the production of Endoplasmic Reticulum ER-derived membrane vesicles, which are the sites of viral replication. To understand the physical basis of how proteins fold in nature and to solve the challenge of protein structure prediction, Ab-initio and comparative modeling are crucial tools.

Results: The systematic in silico technique, ThreaDom, had only predicted one domain (4 - 190) of NSP4B.

View Article and Find Full Text PDF

The combinatorial scale of amino-acid sequence-space has traditionally precluded substantive study of the full protein sequence-structure map. It remains unknown, for instance, how much of the vast uncharted landscape of far-from-natural sequences encodes the familiar ensemble of natural folds in a fashion consistent with the laws of biophysics but seemingly untouched by evolution on Earth. The scale of sequence perturbations required to access these spaces exceeds the reach of even gold-standard experimental approaches such as directed evolution.

View Article and Find Full Text PDF

Neuroinflammation is a critical feature in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). Hesperetin can exert anti-inflammatory, antioxidant and other neuroprotective effects. In this study, the scopolamine (SCOP)-induced cognitive dysfunction in mice model was used to evaluate the neuroprotective effects of hesperetin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!