A chemokine-like factor 1 (CKLF1) is a recently discovered chemokine with broad-spectrum biological functions in inflammation and autoimmune diseases. C19 as a CKLF1's C-terminal peptide has been reported to exert inhibitory effects in a variety of diseases. However, the roles of CKLF1 and C19 on vascular smooth muscle cell (VSMC) migration and neointima formation still remain elusive. The effects of CKLF1 and C19 on VSMC migration and neointimal formation were investigated in cultured VSMCs and balloon-injured rat carotid arteries based on techniques including adenovirus-induced CKLF1 overexpression, gel based perivascular administration of C19, Boyden chamber, scratch-wound assay, real-time PCR, western blot and immunohistochemical analysis. CKLF1 was noticed to accumulate preferentially in neointima after the injury and colocalize with VSMCs. Luminal delivery of CKLF1 adenovirus to arteries exacerbated intimal thickening while perivascular administration of C19 to injured arteries attenuated this problem. In cultured primary VSMCs, CKLF1 overexpression up-regulated VSMC migration, which was down-regulated by C19. These data suggest that CKLF1 has a pivotal role in intimal hyperplasia by mediating VSMC migration. C19 was demonstrated to inhibit CKLF1-mediatated chemotaxis and restenosis. Thus further studies on C19 may provide a new treatment perspective for atherosclerosis and post-angioplasty restenosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-012-2309-1 | DOI Listing |
Chin Med
January 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea.
Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.
Cytojournal
November 2024
The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
Objective: Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension.
View Article and Find Full Text PDFMol Ther
December 2024
Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), 6229HX Maastricht, the Netherlands. Electronic address:
Redox Biol
February 2025
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:
NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!