A new collection of several Red Sea sponges was investigated for the discovery of potential breast cancer migration inhibitors. Extracts of the Verongid sponges Pseudoceratina arabica and Suberea mollis were selected. Bioassay-directed fractionation of both sponges, using the wound-healing assay, resulted into the isolation of several new and known brominated alkaloids. Active fractions of the sponge Pseudoceratina arabica afforded five new alkaloids, ceratinines A-E (2-6), together with the known alkaloids moloka'iamine (1), hydroxymoloka'iamine (7) and moloka'iakitamide (8). The active fraction of the sponge Suberea mollis afforded the three known alkaloids subereamolline A (9), aerothionin (10) and homoaerothionin (11). Ceratinine B (3) possesses an unprecedented 5,7-dibrominated dihydroindole moiety with an epoxy ring on the side chain of a fully substituted aromatic moiety. Ceratinines D (5) and E (6) possess a terminal formamide moiety at the ethylamine side chain. Subereamolline A (9) potently inhibited the migration and invasion of the highly metastatic human breast cancer cells MDA-MB-231 at the nanomolar doses. Subereamolline A and related brominated alkaloids are novel scaffolds appropriate for further future use for the control of metastatic breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509531PMC
http://dx.doi.org/10.3390/md10112492DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
pseudoceratina arabica
12
cancer migration
8
migration invasion
8
red sea
8
sponge pseudoceratina
8
suberea mollis
8
brominated alkaloids
8
side chain
8
alkaloids
6

Similar Publications

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

A pan-tumor review of the role of poly(adenosine diphosphate ribose) polymerase inhibitors.

CA Cancer J Clin

January 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.

Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.

View Article and Find Full Text PDF

Background: Papillary Thyroid Carcinoma (PTC) is the most common thyroid cancer, with an etiology and progression that are not fully understood. Research suggests a link between cathepsins and PTC, but the causal nature of this link is unclear. This study uses Mendelian Randomization (MR) to investigate if cathepsins causally influence PTC risk.

View Article and Find Full Text PDF

FDA Approves Inavolisib Combo for PIK3CA-Mutated, HR+ Breast Cancer.

Curr Med Chem

January 2025

Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.

View Article and Find Full Text PDF

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!