Recently, it has been found that biological phosphorus removal can be achieved in an aerobic/extended-idle (AEI) process using both glucose and acetate as the sole substrate. However, the microbial consortiums involved in glucose-fed and acetate-fed systems have not yet been characterized. Thus the aims of this paper were to investigate the diversities and dynamics of bacterial communities during the acclimation period, and to quantify polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in the systems. The phylogenetic analysis showed that the microbial communities were mainly composed of phylum Proteobacteria, Bacteroidetes, Chlorobi and another six kinds of unclassified bacteria. Fluorescence in-situ hybridization (FISH) analysis revealed that PAOs and GAOs accounted for 43 ± 7 and 16 ± 3% of all bacteria in the glucose-fed system, and 19 ± 4 and 35 ± 5% of total bacteria in the acetate-fed system, respectively. The results showed that the conventional PAOs could thrive in the AEI process, and a defined anaerobic zone was not necessarily required for putative PAOs growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2012.578 | DOI Listing |
Oecologia
January 2025
Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
Rapid environmental changes across Europe include warmer and increasingly variable temperatures, changes in soil nutrient availability, and pollinator decline. These abiotic and biotic changes can affect natural plant populations and force them to optimize resource use against competitors. To date, the evolution of competitive ability in the context of changes in nutrient availability remains understudied.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Department of Food Research, Faculty of Chemical Sciences, Universidad Autónoma de Coahuila, Blvd. V. Carranza e Ing. José Cárdenas s/n Col. República C.P., Saltillo, Coahuila, 25280, Mexico.
Objective Of The Review: Edible mushrooms are found to be foods with high nutritional content, which have been shown to be more widely used ingredients in cooking in traditional dishes. This article explores the rising trend in the use of edible mushrooms in new formulations of functional foods, taking advantage of their properties and benefits in human health.
Recent Findings: The use of mushrooms as an ingredient in new or modified food formulations is driven by solid evidence of their nutritional content and bioactivity.
Nat Commun
January 2025
Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China.
Front Plant Sci
December 2024
College of Plant Protection, Yunnan Agricultural University, Kunming, China.
Excessive use of chemical fertilizers and extensive farming can degrade soil properties so that leading to decline in crop yields. Combining plant growth-promoting rhizobacteria (PGPR) with biochar (BC) may be an alternative way to mitigate this situation. However, the proportion of PGPR and BC at which crop yield can be improved, as well as the improvement effect extent on different eco-geographic region and crops, remain unclear.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
Background: Nutrient limitation is a universal phenomenon in terrestrial ecosystems. Root and mycorrhizal are critical to plant nutrient absorption in nutrient-limited ecosystems. However, how they are modified by N and P limitations with advancing vegetation successions in karst forests remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!