Relationships between agents in multitrophic systems are complex and very specific. Insect-transmitted plant viruses are completely dependent on the behaviour and distribution patterns of their vectors. The presence of natural enemies may directly affect aphid behaviour and spread of plant viruses, as the escape response of aphids might cause a potential risk for virus dispersal. The spatio-temporal dynamics of Cucumber mosaic virus (CMV) and Cucurbit aphid-borne yellows virus (CABYV), transmitted by Aphis gossypii in a non-persistent and persistent manner, respectively, were evaluated at short and long term in the presence and absence of the aphid parasitoid, Aphidius colemani. SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersion at short term, which enhanced CMV spread, though consequences of parasitism suggest potential benefits for disease control at long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV at long term. The impact of aphid parasitoids on the dispersal of plant viruses with different transmission modes is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509684 | PMC |
http://dx.doi.org/10.3390/v4113069 | DOI Listing |
Emerg Microbes Infect
January 2025
Center for Influenza and Emerging Diseases, University of Missouri, Columbia, MO 652011, USA.
Influenza A viruses (IAVs) pose a major public health threat due to their wide host range and pandemic potential. Pigs have been proposed as "mixing vessels" for avian, swine, and human IAVs, significantly contributing to influenza ecology. In the United States, IAVs are enzootic in commercial swine farming operations, with numerous genetic and antigenic IAV variants having emerged in the past two decades.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Background: Sugarcane is cultivated globally and affected by more than 125 pathogens, which lead to various plant diseases. In recent years, high-throughput sequencing (HTS)-based genome analyses have been broadly adopted for the discovery of both characterized and un-characterized viruses from plant samples. In this study, the HTS data of sugarcane pooled sample retrieved from sequence read archive (SRA) were de novo re-assembled using CLC Genomic Workbench.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.
View Article and Find Full Text PDFVirology
January 2025
College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China. Electronic address:
Plant viruses represent a major threat to agriculture, affecting a wide range of crops with substantial economic losses. This study presented a novel strategy for managing plant viral diseases through the development an attenuated vaccine utilizing cucumber mosaic virus (CMV) for virus-induced gene silencing (VIGS) targeting susceptibility gene. TOBAMOVIRUS MULTIPLICATION 2A (TOM2A) gene was identified as a critical factor that enhances susceptibility to TMV infection in plants.
View Article and Find Full Text PDFPLoS One
January 2025
PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France.
Local co-circulation of multiple phylogenetic lineages is particularly likely for rapidly evolving pathogens in the current context of globalisation. When different phylogenetic lineages co-occur in the same fields, they may be simultaneously present in the same host plant (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!