Insights into the functions of a prophage recombination directionality factor.

Viruses

Laboratoire de Chimie Bactérienne CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France.

Published: October 2012

Recombination directionality factors (RDFs), or excisionases, are essential players of prophage excisive recombination. Despite the essentially catalytic role of the integrase in both integrative and excisive recombination, RDFs are required to direct the reaction towards excision and to prevent re-integration of the prophage genome when entering a lytic cycle. KplE1, HK620 and numerous (pro)phages that integrate at the same site in enterobacteria genomes (such as the argW tRNA gene) all share a highly conserved recombination module. This module comprises the attL and attR recombination sites and the RDF and integrase genes. The KplE1 RDF was named TorI after its initial identification as a negative regulator of the tor operon. However, it was characterized as an essential factor of excisive recombination. In this study, we designed an extensive random mutagenesis protocol of the torI gene and identified key residues involved in both functions of the TorI protein. We show that, in addition to TorI-TorR protein-protein interaction, TorI interacts in solution with the IntS integrase. Moreover, in vitro, TorR and IntS appear to compete for TorI binding. Finally, our mutagenesis results suggest that the C-terminal part of the TorI protein is dedicated to protein-protein interactions with both proteins TorR and IntS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509656PMC
http://dx.doi.org/10.3390/v4112417DOI Listing

Publication Analysis

Top Keywords

excisive recombination
12
recombination directionality
8
tori protein
8
torr ints
8
recombination
7
tori
6
insights functions
4
functions prophage
4
prophage recombination
4
directionality factor
4

Similar Publications

Large serine integrases (LSIs) catalyze unidirectional site-specific DNA recombination reactions, yet those reactions are reversed by the presence of a cognate recombination directionality factor (RDF). Mechanistic understanding of directionality control has been hampered by a lack of structural information. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of six SPbeta integrase-DNA complexes along the integrative (-RDF) and excisive (+RDF) reaction pathways, at 4.

View Article and Find Full Text PDF

Variable orthogonality of serine integrase interactions within the ϕC31 family.

Sci Rep

November 2024

School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF, Liverpool, UK.

Serine integrases are phage- (or mobile element-) encoded enzymes that catalyse site-specific recombination reactions between a short DNA sequence on the phage genome (attP) and a corresponding host genome sequence (attB), thereby integrating the phage DNA into the host genome. Each integrase has its unique pair of attP and attB sites, a feature that allows them to be used as orthogonal tools for genome modification applications. In the presence of a second protein, the Recombination Directionality Factor (RDF), integrase catalyses the reverse excisive reaction, generating new recombination sites, attR and attL.

View Article and Find Full Text PDF

Variable orthogonality of RDF - large serine integrase interactions within the ϕC31 family.

bioRxiv

April 2024

School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K.

Large serine integrases are phage- (or mobile element-) encoded enzymes that catalyse site-specific recombination reactions between a short DNA sequence on the phage genome () and a corresponding host genome sequence (), thereby integrating the phage DNA into the host genome. Each integrase has its unique pair of and sites, a feature that allows them to be used as orthogonal tools for genome modification applications. In the presence of a second protein, the Recombination Directionality Factor (RDF), integrase catalyses the reverse, excisive reaction, generating new recombination sites, and .

View Article and Find Full Text PDF

Bacteriophage lambda site-specific recombination.

Mol Microbiol

May 2024

Department of Molecular Biology, Cell Biology, and Biochemistry, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.

The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell.

View Article and Find Full Text PDF

Control of the Serine Integrase Reaction: Roles of the Coiled-Coil and Helix E Regions in DNA Site Synapsis and Recombination.

J Bacteriol

July 2021

Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.

Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA-binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!